Code No.: 20291 E Sub. Code: AMMA 41

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

Fourth Semester

Mathematics - Core

ABSTRACT ALGEBRA

(For those who joined in July 2020 only)

Time: Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

- 1. The order of the element -1 in (Z, +) is _____
 - (a) 2
 - (b) infinite
 - (c) 1
 - (d) -1
- 6. The number of automorphisms of a cyclic group of order 7 is ————.
 - (a) 6
- (b) 7
- (c) 49
- (d) I
- 7. Let R be a ring with identity. They $\forall a, b \in R$,
 - (a) $(a+b)^2 = a^2 + ab + ba + b^2$
 - (b) $(a-b)^2 = a^2 2ab + b^2$
 - (c) $(a+b)(a-b) = a^2 b^2$
 - (d) $(a+b)^2 = a^2 + 2ab + b^2$
- 8. Which is not a ring?
 - (a) (Z, +, .)
- (b) (Q, +, .)
- (c) (R+,.)
- (d) (R, ., +)
- 9. Let $f(x), g(x) \in \mathbb{Z}_4[x]$ be defined as $f(x) = x^2 + 3x + 1 \quad \text{and} \quad g(x) = 2x^2 + x.$ Then degree of f(x)g(x) = -----
 - (a) 4
- (b) 3
- (c) 2
- (d) 1
- Page 3 Code No.: 20291 E

- 2. If $-(ab)^2 = a^2b^2 \forall a, b \in G$ is true then
 - (a) G is a cyclic group
 - (b) G is non cyclic group
 - (c) G is any group
 - (d) G is finite
- 3. The set of all generators of the group (Z $_{12}$, \oplus) is
 - (a) $\{1, 2, 3, 4\}$
- (b) {1, 3, 6, 9}
- (c) $\{1, 5, 7, 11\}$
- (d) {2, 3, 5, 7, 11}
- 1. In an abelian group $G = \{1, i, -1, -i\}$, $\langle -1 \rangle =$
 - (a) $\{1, i, -1, -i\}$
- (b) $\{i, -i\}$
- (c) $\{-1\}$
- (d) {-1, 1}
- 5. If the map $f:(\mathbb{C}, +) \hookrightarrow (\mathbb{R}, +)$ defined by $f(x+iy) = y \forall x + iy \in \mathbb{C}$ is a homomorphism, then $\ker f = ----$
 - (a) R
- (b) R+
- (c) C
- (d) 0

Page 2 Code No.: 20291 E

- 10. The product of the polynomials 2x + 4 and $4x^2 + 3x + 1$ in $\mathbb{Z}_5[x]$ is
 - (a) $8x^3 + 2x^2 + 4x + 4$
 - (b) $3x^3 + 2x^2 + 4x + 4$
 - (c) $8x^3 + 22x^2 + 14x + 4$
 - (d) $3x^3 + 2x^2 + 3x + 4$

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Let G be a group and let 'a' be a fixed element of G. Let $H_a = \{x \in G \mid ax = xa\}$. Show that H_a is a subgroup of G.

Or

(b) Let G be a group in which (ab)^m = a^mb^m for three consecutive integers and for all a, b ∈ G. Show that G is abelian. 12. (a) Let H and K be two finite subgroups of a group G. Show that $|HK| = \frac{|H||K|}{|H \cap K|}$.

Or

- (b) State and Prove Euler's theorem.
- 13. (a) Prove that the intersection of H and K two normal subgroups of a group G is a normal subgroup of G.

Or

- (b) Let G and G' be two groups and $f: G \to G'$ be a homomorphism. Prove that f is 1-1 if and only if $\ker f = \{e\}$.
- 14. (a) Prove that any finite integral domain is a field.

Or

(b) Let R be an integral domain. Let a and b be two non-zero elements of R. PRove that a and b are associates iff a = bu where u is a unit in R.

Page 5 Code No.: 20291 E

- 17. (a) Let H be a subgroup of a group G. Prove that
 - (i) any two left cosets of H are either identical or disjoint.
 - (ii) union of all the left cosets of H is G
 - (iii) the number of elements in any left coset aH is the same as the number of elements in H.

Or

- (b) Let H be a subgroup of a group G. Prove that following
 - (i) $a \in H \Leftrightarrow aH = H$
 - (ii) $aH = bH \Leftrightarrow a^{-1}b \in H$
 - (iii) $a \in b H \Leftrightarrow a^{-1} \in Hb^{-1}$
 - (iv) $a \in bH \Leftrightarrow aH = bH$
- 18. (a) Show that isomorphism is an equivalence relation among groups.

Or

- (b) For any group G, prove that
 - (i) Aut G is a group under the composition of functions
 - (ii) I(G) is normal subgroup of Aut G.

15. (a) If $f: \mathbb{Z} \to \mathbb{Z}_n$ is defined by f(x) = r, x = qn + r, $0 \le r < n$, show that f is a homomorphism.

Or

- (b) Let R be any ring and $f(x), g(x) \in R[x]$. Define the binary operations '+' and '.' by
- $f(x) + g(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$ and $f(x) \cdot g(x) = c_0 + c_1x + \dots + c_{m+n}x^{m+n}$ where $c_0 = a_0b_0$; $c_1 = a_0b_1 + a_1b_0$;... $c_{m+n} = a_mb_n$;
 Prove that R[x] is a ring.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Prove that C^{\bullet} is a group under usual multiplication (C^{\bullet}, \cdot) which is defined by $(a+ib) \cdot (c+id) = (ac-bd) + i(ad+bc)$.

Or

(b) Show that the union of two subgroups of a group G is a subgroup iff one is contained in the other.

Page 6 Code No.: 20291 E

19. (a) Let R be a commutative ring with identity. Prove that every maximal ideal of R is a prime ideal of R.

Or

- (b) Let R be a commutative ring with identity. Show that R is a field iff R has no proper ideals.
- 20. (a) State and prove division algorithm.

 Ω_{r}

(b) State and prove fundamental theorem of homomorphism on rings.