Code No.: 20300 E

Sub. Code: AEMA 62

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

Sixth Semester

Mathematics

Major Elective — FUZZY MATHEMATICS

(For those who joined in July 2020 only),

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL the questions.

Choose the correct answer:

- The range of membership function is 1.
- (b) A
- (c) X
- (d) [0, 1]
- A fuzzy set A is said to be normal if h(A) =
- (c)
- (d) 3 ·

- If $A \subseteq B$ then ${}^{a}A$
- (b) $\subseteq^{\alpha} B$
- (d) $\subseteq A \cup B$
- If $A_1 \subseteq A_2$, then $f(A_1)$
 - (a) $\subseteq f(A_2)$
- (c) $\supseteq f(A_2)$
- (d) = $f(A_2)$
- If c is a fuzzy complement then $a \le b \Rightarrow$
 - (a) $c(a) \le c(b)$
- (b) $c(a) \ge c(b)$
- (c) c(a) = a
- (d) $c(\alpha) = c(b)$
- If i is a fuzzy intersection then i(a, 1) =
 - (a) 1

- (d)
- If A is a fuzzy number, then ^{0+}A is
 - not bounded
- (b) bounded
- connected
- (d) not connected
- [4, 10]/[1, 2]=-
 - [2, 10]
- (b) [1, 10]
- [2, 4]
- (d) [2, 7]

Page 2 Code No.: 20300 E

- Multi persion decision making was introduced in 9.
 - 1970 (a)
- 1974
- 1980
- 1982 (d)
- Multipersion decision making, $S(x_i, x_j)$

- $N(x_i, x_j) 1$ (d) $\frac{N(x_i, x_j)}{x_i} + 1$

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL the questions, choosing either (a) or (b).

- 11. (a) Define α -cut. Also if
 - $A = \frac{0}{x_1} + \frac{0.2}{x_2} + \frac{0.7}{x_3} + \frac{0.41}{x_4} + \frac{0.5}{x_5} + \frac{0.3}{x_6} + \frac{0.9}{x_7} + \frac{0.81}{x_8} + \frac{0.6}{x_9} + \frac{0.11}{x_{10}}.$

Strong (b) Define : $A = 0.3 / x_1 + 0.1 / x_2 + 0.8 / x_3 + 0.65 / x_4 + 0.4 / x_5 + 0 / x_6 + 0.65 / x_6 + 0.4 / x_8 + 0.66 /$ then find strong α -cut ($\alpha = 0.2, 0.3, 0.4$).

Page 3 Code No.: 20300 E

Prove that ${}^{\alpha}(A \cap B) = {}^{\alpha}A \cap {}^{\alpha}B$.

- Prove that ${}^{\alpha}(\overline{A}) = {}^{(1-\alpha)+}\overline{A}$.
- If c is a continuous fuzzy complement, then 13. (a) prove that c has a unique equilibrium.

- The standard fuzzy intersection is the only (b) idempotent t-norm.
- Prove that

MIN[MIN(A, B), C] = MIN[A, MIN(B, C)]

MAX[MAX(A, B), C] = MAX[A, MAX(B, C)]

If A, B are two fuzzy numbers with

 $A(x) = \begin{cases} \frac{2-x}{2}, & 0 < x < 2 \end{cases}$ and otherwise

 $\left\{\frac{x-2}{2}, \ 0 < x \le 4\right\}$ $B(x) = \begin{cases} \frac{6-x}{2}, & 4 < x \le 6 \text{ then find } A + B. \\ 0 & \text{otherwise} \end{cases}$

Page 4 Code No.: 20300 E

(a) Define fuzzy linear programming with an example.

Or

(b) Solve by graphical method:

Min
$$z = x_1 - 2x_2$$
,

$$3x_1 - x_2 \ge 1, \ 2x_1 + x_2 \le 6, \ 0 \le x_1 \le 2,$$

$$x_1 \ge 0.$$

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL the questions, choosing either (a) or (b).

16. (a) Prove that a fuzzy set A on R is convex iff $A(\lambda(x_1) + (1-\lambda)x_2) \ge Min\{A(x_1), A(x_2)\}.$

Or

- (b) Explain the following:
 - (i) Height of a fuzzy set
 - (ii) Level set of a fuzzy set
 - (iii) Standard fuzzy complement.
- 17. (a) State and prove Second Decomposition Theorem.

Or

(b) Explain about Extension principle for fuzzy sets.

Page 5 Code No.: 20300 E

18. (a) State and prove First Characterization theorem of fuzzy complements.

Or

- (b) Prove that $i_{\min}(a, b) \le Min(a, b)$. i_{\min} denotes the drastic intersection.
- 19. (a) Explain about Arithmetic operation on intervals.

Or

- (b) Explain about Lattice of fuzzy numbers.
- 20. (a) Explain: Multi persion decision making.

Or

(b) Solve: Max $z = 5x_1 + 4x_2$,

$$\langle 4, 2, 1 \rangle x_1 + \langle 5, 3, 1 \rangle x_2 \le \langle 24, 5, 8 \rangle$$

$$\langle 4, 1, 2 \rangle x_1 + \langle 5, 3, 1 \rangle x_2 \le \langle 12, 6, 3 \rangle$$
.

Page 6 Code No.: 20300 E