Sub. Code : SMMA 65/	(a) $x+2$ (b) $2(x+1)$
AMMA 65	(c) 2x (d) 2
ESC DEGREE EXAMINATION, APRIL 2023.	4. Choose the wrong statement from the following
Sixth Semester	(a) $E = 1 + \Delta$ (b) $\nabla = E^{-1}$
Mathematics — Core	(c) $1 - E^{-1} = \nabla$ (d) $\delta = E^{1/2} - E^{-1/2}$
NUMERICAL METHODS	5. If $f(4)=1$, $f(6)=3$, then the interpolating
(For those who joined in July 2017-2020)	polynomial is ———.
Time: Three hours Maximum: 75 marks	(a) $3x-1$ (b) $x-3$ (c) $x-3$ (d) $3x-2$
PART A — $(10 \times 1 = 10 \text{ marks})$	
Answer ALL questions. Choose the correct answer:	6. Newton's backward interpolation formula is used when interpolation is required near the
Choose the transcendental equation from the	(a) beginning (b) middle
following ————.	(c) end (d) at the average
(a) $x^3 - 1 = 0$ (b) $x^2 + x + 1 = 0$ (c) $x = 1$ (d) $e^x - 1 = 0$ 2. Regula-Falsi method is also known as ———.	7. By evaluating $\int_{0}^{1} \frac{dx}{1+x^2}$ by numerical interpolation,
 Regula-Falsi method is also known as ———. (a) method of tangents 	we obtain an approximate value of —————
(b) method of false position	(a) \log_e^2 (b) π
(c) back substitution(d) forward substitution	(c) \log_{10}^2 (d) ϵ
	Page 2 Code No.: 10071 E

The water

Reg. No. :.....

3. If $f(x) = x^2 + x + 1$, then taking h = 1, $\Delta f(x) =$

9.	The order of the difference equat	ion	13. (a) The following are data from the steam table:								
	$y_{n+1} - 3y_n = 3^n$ is		Temp	eratur	e°C:	140	150	160	170	180	
	(a) 2 (b) 0		Pressi	ure kgf	√cm²:	3.685 4	1.854	6.302	8.076	10.225	
	(c) 1 (d) 3	=		Using Newton's formula, find the pressure of the steam for the temperature of 142°.							
10.	The order of the difference equation	is					r				
	$y_{n+2} - 2y_{n+1} + y_n = 2^n$ is (a) $n+1$ (b) 2			(b) Using Gauss's backward formula, find the value of sales for the year 1966 given that							
	(c) n (d) $n+2$		2	Year :	1931	1941	1951	1961	1971	1981	
	PART B — $(5 \times 5 = 25 \text{ marks})$		1	Sales	: 12	15	20	27	39	52	
Ā	answer ALL questions, choosing either (a) or (b).		14.	(a)]	Find $\frac{dy}{dx}$	and	$\frac{d^2y}{dx^2}$	at $x =$	1.25 fi	om the	
1.	(a) Using Newton-Raphson method, find correct to four decimal places, the root between 0 and 1 of the equation $x^3 - 6x + 4 = 0$.		following values of x and y :								
				x: '	1.00	1.05	;	1.10	1.15	- 2	
	$\sim \mathbf{Or}$			y:	1.00000	1.0247	0 1.0	04881	1.0723	8	
	(b) Solve the equations $2x + y + 4z = 1$	2,	ج.	x:	1.20	1.25		1.30		# ***	
	0 0 0	ру		<i>y</i> :	1.09544	1.1180	3 1.	14017			
×	Gauss-elimination method.					C	r	*			
•:	Page 3 Code No.: 10071	E				Pag	ge 4	Code	No. : 1	0071 E [P.T.O.]	

12.

Prove that $(\Delta(f_i g_i) = f_i \Delta g_i + g_{i+1} \Delta f_i)$.

if the interval of differencing is 2.

Evaluate $\Delta^{10}[(1-x)(1-2x^2)(1-3x^3)(1-4x^4)]$

Error in Simpson's one third rule is of order

(b)

(d)

 h^4

4h

8.

11.

 h^2

h

(a)

(c)

(b) Use the trapezoidal rule with $h = \frac{1}{4}$ to evaluate $\int_0^1 f(x) dx$ using the table below:

x: 0.000 0.250 0.500 0.750 1.000 f(0: 0.79788 0.77884 0.70418 0.60227 0.48894

15. (a) Solve the difference equation. $y_{n+2} - Sy_{n+1} + 15y_n = 0$

Or (b) Solve $u_{x+2} - 6u_{x+1} + 9u_x = 0$. PART C — $(5 \times S = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

(a) Determine the root of ar' -3 = 0 correct to three decimal places, using the method of false position.

Or

(b) Solve by Gauss elimination procedure, the equations.

3.15x - 1.96y + 3.85z = 12.95

2.13x + 5.12y - 2.89z = -8.61

5.92x + 3.05y + 2.15z = 6.88.

Page 5 Code No.: 10071 E

17. (a) Represent the function $x^4 - 12x^3 + 42x^2 - 30x + 9 \text{ and its successive differences in factorial rotation in which the differencing interval <math>h = 1$.

Or

- (b) Obtain the function whose first difference is $x^3 + 3x^2 + 5x + 2$.
- 18. (a) Find log 337.5, by Laplace Everett formula, for the following data:

$$x$$
:
 310
 320
 330
 $\log x$:
 2.4913617
 2.5051500
 2.5185139
 x :
 340
 350
 360
 $\log x$:
 2.5314789
 2.5440680
 2.5563025

Or

(b) Prove Lagrange's interpolation formula in the form

$$f(x) = \sum_{r=0}^{\infty} \frac{\phi(x)f(x_r)}{(x - x_r)\phi'(x_r)}, \text{ where}$$

$$\phi(x) = \prod_{r=0}^{\infty} (x - x_r) \text{ and } \phi'(x) = \left[\frac{d}{dx}\phi(x)\right].$$

Page 6 Code No.: 10071 E

19. (a) Using the following data, find f'(5). x: 0 2 3 4 7 9 f(x): 4 26 58 112 466 922

Or

- (b) Dividing the range into 10 equal parts, find the approximate value of ∫ sin x dx by
 (i) Trapezoidal rule (ii) Simpson's rule
- (a) Solve the difference equation $y_{n+3} 3y_{n+1} + 2y_n = 0 \quad \text{given} \quad y_1 = 0, \ y_2 = 8$ and $y_3 = -2$.

Or

(b) Solve the equation $y_{n+2}+y_{n+1}-56y_n=2^n\left(n^2-3\right).$

1941 - Chille NA: 10071 E