	Reg. No	D. :
Cod	le No. : 10068 E	Sub. Code: SMMA 62
B.Sc	. (CBCS) DEGREE EXA	MINATION, APRIL 2023.
.	Sixth Ser	nester
	Mathematic	cs – Core
	NUMBER T	THEORY
•	(For those who joined in	July 2017-2019 only)
	: Three hours	Maximum: 75 marks
	PART A — (10 ×	
	Answer ALL	questions.
	Choose the correct answ	er:
1.	The value of $\binom{n}{n}$ is	
•	(a) 0	(b) n
	(c) 1	(d) n!
	The value of 1! is	
	(a) 1	(b) 0
	(c) n	(d) none
3.	gcd (-5, 5) is	
	(a) -5	(b) 5
9	(c) 1	(d) 25

4.	For any positive integers a and b the value of	10. If p	o is a prime, then $(p-1)! \equiv -1$
	gcd(a,b) lcm(a,b) is	(a)	$\mod 1$ (b) $\mod p$
	(a) ab (b) $a+b$	(c)	$\mod p-1$ (d) none
	(c) a (d) b		PART B — $(5 \times 5 = 25 \text{ marks})$
5.	Repunit R_n consisting of n consecutive	Answ	er ALL questions, choosing either (a) or (b).
	(a) 2's (b) 1's	11. (a)	State and prove the first principle of finite induction.
	(c) 3's (d) 0's		Or
6.	The value of $\pi_{4,1}(89)$ is	(b)	State and prove Pascal's rule.
	(a) 13 (b) 10	12. (a)	State and prove Euclid's lemma.
	(c) 8 (d) 9		\mathbf{Or}
7.	Which one of the following is wrong?	(b)	Find the gcd (12378, 3054).
	(a) $-12 \equiv 2 \pmod{7}$ (b) $13 \equiv 6 \pmod{7}$	13. (a)	If p is a prime and $p \mid ab$, then prove that
	(c) $91 \equiv 0 \pmod{7}$ (d) $82 \equiv 4 \pmod{7}$		$p \mid a \text{ or } p \mid b$.
8.	If $4x \equiv 0 \pmod{12}$, the value of x is		Or
	(a) 2 (b) 3	(b)	Prove that there is an infinite number of primes.
	(c) 4 (d) 5		
9.	Which one is the smallest pseudo prime to the base 5?	14. (a)	Solve $18x \equiv 30 \pmod{42}$.
	(a) 91 (b) 217		\mathbf{Or}
	(c) 247 (d) 341	(b)	If $ca \equiv cb \pmod{n}$ and $d = \gcd(c, n)$, prove that $a \equiv b \pmod{n/d}$.
	Page 2 Code No.: 10068 E		Page 3 Code No.: 10068 E

Page 2 Code No.: 10068 E

15. (a) State and prove Wilson theorem.

Or

(b) Factor the number 12499 using Fermat's method.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) State and prove Archimedean property.

Or

- (b) State and prove binomial theorem.
- 17. (a) State and prove Division Algorithm.

Or

- (b) Solve the linear diophantine equation 172x + 20y = 1000.
- 18. (a) Prove that the number $\sqrt{2}$ is irrational. Or
 - (b) If p_n is the nth prime number, then prove that $p_n \le 2^{2^{n-1}}$.
- . 19. (a) State and prove Chinese remainder theorem.
 Or
 - (b) Solve $7x + 3y \equiv 10 \pmod{16}$ $2x + 5y \equiv 9 \pmod{16}$.
 - 20. (a) State and prove Fermat's theorem.
 - (b) Clarify the proof of Wilson theorem with p=13.

Page 4 Code No.: 10068 E