Code No.: 10067 E

Sub. Code: SMMA 61

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023.

Sixth Semester

Mathematics - Core

COMPLEX ANALYSIS

(For those who joined in July 2017 - 2019)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

- 1. The real part of the function $f(z) = z \overline{z}$ is
- (b) x + y
- (c) $x^2 + y^2$
- (d)
- If f(z) = u + iv is analytic and $f(z) \neq 0$, then $\nabla^2 \log |f(z)| = -$
 - (a) $|f'(x)|^2$
- (b) $\log |f'(x)|$
- (c) 1
- Where we evaluated the $\int_0^{2\pi} f(\cos\theta,\sin\theta)d\theta$, type of integrals?
 - (a) |z| > r
- (c) |z|=r
- In the integral type $\int_{-\infty}^{\infty} \frac{\cos x}{\left(x^2 + a^2\right)^2} dx$, the value of

 - (a) $\frac{1}{(z^2 + a^2)^2}$ (b) $\frac{e^{iz}}{(z^2 + a^2)^2}$
 - (c) $\frac{\cos z}{(z^2 + a^2)^2}$ (d) $\frac{\cos z}{(z^2 + a^2)^3}$
- The fixed point of the transformation w = z + a is
 - (a) None

- (d)
- A bilinear transformation having ∞ as the only fixed point is -
 - (a) inversion
 - translation
 - contraction
 - magnification

- 3. The length of the circle $z = a + re^{it}$, $0 \le t \le 2\pi$ is
 - (a) $2\pi r$
- (b)
- (c)
- (d) 2r
- The value of $\int_{0}^{\infty} \frac{zdz}{z^2-9}$, C:|z|=2 is
 - (a) $4\pi i$
- (b)
- (c) 0
- (d) 2mi
- The singular point of $f(z) = \tan z$ is -
 - (a) $\frac{\pi}{2} + n\pi, n \in \mathbb{Z}$ (b) $\frac{\pi}{2}$
- - (c) $\frac{\pi}{2} + n\pi, n \in \mathbb{N}$ (d) 0
- Residue of the function $f(z) = \frac{e^z}{z^2}$ at z = 0 is
 - (a) $\frac{1}{2}$
- (b) 1
- (d)

Page 2 Code No.: 10067 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

State and prove complex form of C-R11. (a) equations.

- (b) Prove that $u = x^2 y^2$ and $v = \frac{y}{x^2 + y^2}$ are both hormonic, but u + iv is not analytic.
- Evaluate $\int |z|^2 dz$, where C is the square with vertices (0,0),(1,0),(1,1) and (0,1).

- State and prove Morera's theorem.
- (a) Expand $f(z) = \sin z$ in a Taylor series about 13. $z=\pi/\Lambda$.

(b) Evaluate $\int_{C} \frac{z^2 dz}{(z-2)(z+3)}$, where C is the circle |z|=4.

14. (a) Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{13 + 5\sin\theta}.$$

Or

- (b) Evaluate $\int_{0}^{\infty} \frac{dx}{x^2 + 1}$.
- 15. (a) Find the image of the circle |z-3i|=3 under the map $w=\frac{1}{2}$.
 - (b) Show that the transformation $w = \frac{5-4z}{4z-2}$ maps the unit circle |z|=1 into a circle of radius unity and centre $-\frac{1}{2}$.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

- 16. (a) Show that $u = \log \sqrt{x^2 + y^2}$ is harmonic and determine its conjugate and hence find the corresponding analytic function f(z).
 - (b) If f(z) is analytic, then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2.$

Page 5 Code No.: 10067 E

20. (a) Find the bilinear transformation which maps the points $-1,1,\infty$ respectively on -i,-1,i.

Or

(b) Find the image of the strip 2 < x < 3 under $w = \frac{1}{z}$.

17. (a) State and prove Cauchy's integral formula.

Or

- (b) Evaluate $\int_C \frac{e^z}{(z+2)(z+1)^2} dz$, where C is |z|=3.
- 18. (a) Expand $\frac{1}{(z-1)(2-1)}$ as a power series in z in the regions
 - (i) |z| < 1
 - (ii) 1 < |z| < 2
 - (iii) |z| > 2

Or

- (b) State and prove Rouche's theorem.
- 19. (a) Prove that $\int_{0}^{2\pi} \frac{d\theta}{1 + a \sin \theta} = \frac{2\pi}{\sqrt{1 a^2}}, (-1 < a < 1).$

Or

(b) Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)^2}.$

Page 6 Code No.: 10067 E