(6 page	s) Reg. No.:	3.	Let $f: X \to Y$ be an arbitrary crisp function and
	No.: 10089 E Sub. Code: SEMA 6 B		$A \in \mathcal{F}(X)$. Then (a) $A \subset f^{-1}(f(A))$ (b) $A \supset f^{-1}(f(A))$
	B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023	4.	(c) $A \subseteq f^{-1}(f(A))$ (d) $A \supseteq f^{-1}(f(A))$ Let $A, B \in \mathcal{F}(X)$ and $\alpha, \beta \in [0,1]$. Then $\alpha \leq \beta \Rightarrow$
	Sixth Semester Mathematics – Major Elective		(a) $\alpha_A \supseteq \beta_A$ (b) $\alpha_A \supseteq \beta +_A$ (c) $\alpha +_A \supseteq \beta_A$ (d) $\alpha_A \subseteq \beta_A$
	FUZZY MATHEMATICS (For those who joined in July 2017-2019)	5.	The standard fuzzy intersection is the only τ -norm.
Time:	Three hours Maximum: 75 marks PART A — $(10 \times 1 = 10 \text{ marks})$ Answer ALL questions.	š	(a) Archimedean(b) Strictly Archimedean(c) Idempotent(d) Involutive
1. W	Thich of the following symbol is used for universal et?	6.	 (d) Involutive u(a,b) = min(1, a+b) is known as ———. (a) Standard union (b) Algebraic sum (c) Bounded sum (d) Drastic union
p	set whose members can be labelled by the ositive integers is called a	7.	If $A = [0, 1]$, $B = [1, 2]$ and $C = [-2, -1]$, then $A, (B+C) = \frac{1}{2}$. (a) $[-1, 1]$ (b) $[-2, 2]$
(6	(1) consequents his set		(c) [1, 1] (d) [2, 2] Page 2 Code No. : 10089 E

	(c)	sub normal	(d)	normal					
9.		set of vectors <i>I</i> traints is called a —		at satisfy all	l given				
	(a)	Cost vector							
	(b)	Feasible set							
	(c)	Constraint matrix							
	(d)	Right hand - side vector							
10.	Fuzzy decision making was introduced by								
	(a)	Bellman	(þ)	Blin					
	(c)	Whinston	(d)	Datiz					

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Prove that $S(A, B) = \frac{|A \cap B|}{|A|}$.

Prove that the absorption law.

Or

Page 3

Code No.: 10089 E

To Qualify as a fuzzy number, a fuzzy set A on \mathbb{R}

(b)

not convex

8.

must be -

convex

(a)

(b)

12. (a) Let $A, B \in \mathcal{F}$ (X). Then prove that $\alpha \in [0, 1]$, A = B if and only if $\alpha_A = \alpha_B$ and A = B iff $\alpha +_A = \alpha +_B$.

Or

- (b) Let $f: X \to Y$ be an arbitrary crisp function. Then prove that for any $A \in \mathcal{F}(X)$, f fuzzfied by the extension principle satisfies the equation $f(A) = U_{\alpha \in [0,1]} f(\alpha +_A)$.
- 13. (a) If C is a continuous fuzzy complement, then prove that C has a unique equilibrium.

Or

- (b) For all $a, b \in [0, 1]$, prove that max $(a, b) \le u(a, b) \le u_{\max}(a, b)$.
- 14. (a) Let Min and Max be binary operations on R defined by $Min(A, B)(z) = \sup_{z=\min(x,y)} [A(x), B(y)]$

 $Max(A, B)(z) = \sup_{z=\max(x,y)} [A(x), B(y)]$ respectively. Then prove that, for any $A, B, C \in \mathbb{R}$,

Min[A, Max(B,C)] =

Max[Min(A, B), Min(A, C)]

Or

(b) Explain the arithmetic operations or intervals.

Page 4 Code No.: 10089 E [P.T.O.]

- (a) Define fuzzy linear programming problem.
 Or
- (b) Solve the following fuzzy linear programming problem: Max. $Z = 5x_1 + 4x_2$ Such that $\langle 4, 2, 1 \rangle x_1 + \langle 5, 3, 1 \rangle x_2 \le \langle 24, 5, 8 \rangle$ $\langle 4, 1, 2 \rangle x_1 + \langle 1, 5, 1 \rangle x_2 \le \langle 12, 6, 3 \rangle$ $x_1, x_2 \ge 0$.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

(a) Prove that a fuzzy set A of $\mathbb R$ is convex if and only if $A(\lambda x_1 + (1-\lambda)x_2) \ge \min[A(x_1), A(x_2)]$ for all $x_1, x_2 \in \mathbb R$ and all $\lambda \in [0, 1]$, where min denotes the minimum operator.

Or

- (b) Define the following:
 - (i) α -cut
 - (ii) Strongly α-cut
 - (iii) Level set
 - (iv) Support of a fuzzy set A
 - (v) The height of A
 - (vi) Normal and subnormal fuzzy sets.

Page 5 Code No.: 10089 E

17. (a) State and prove first decomposition theorem.

Or

- (b) For any $A \in \mathcal{F}$ (X), $A = U_{\alpha \Lambda(A)} \alpha_A$ where $\Lambda(A)$ is the set of A, α_A defined by $\alpha_A = \alpha \cdot \alpha_{A(x)}$ and U denotes standard fuzzy union $\Lambda(A) = \{\alpha / \alpha = A(x) \text{ for } x \in X\}$.
- 18. (a) State and prove first characterization theorem of fuzzy complement.

Or

- (b) For all $a, b \in [0, 1]$, prove that $i_{\min}(a, b) \le i(a, b) \le \min(a, b)$ where i_{\min} denotes the drastic intersection.
- 19. (a) State and prove characterization theorem for fuzzy number.

Or

- (b) Explain the lattice of fuzzy numbers.
- 20. (a) Explain the individual decision making.

Or

(b) Explain the multiperson decision making.

Page 6 Code No.: 10089 E