Reg. No. :			(a)	1 .	(b)	0	
Code No.: 10073 E Sub. Cod	e : SAMA 21/		(c)	3	(d)	$x^2 + y^2 +$	z^2
<u> </u>	AAMA 21	3.	The v	alues of $\iint_R dx dy$	where	D is the c	ircular disc
B.Sc. (CBCS) DEGREE EXAMINATION,	APRIL 2023.		$x^2 + y$	² ≤ 5 is			
Second/Fourth Semester			(a) {	5π	(b)	$2\sqrt{5}\pi$	
Mathematics			(c) -	$\sqrt{5}\pi$	(d)	25π	
VECTOR CALCULUS AND FOURIER SERIES		4.	The va	alues of $\iiint_D dx dx$	lydz w	here D is	the region
(For those who joined in July 2017-2020 only)		×	bande	d by the	sphe	$x^2 + y$	$y^2 + z^2 = 9 $ is
Time : Three hours Maximu	ım : 75 marks	as i		· .		4 ==	
PART A — $(10 \times 1 = 10 \text{ marks})$)		(a) 3	6π	(b)	$\frac{4\pi}{3}$	
Answer ALL questions.			(c) 3	24π	(d)	$\frac{3\pi}{4}$	
Choose the correct answer.	- 3.8	5.	If C i	s the straight	line jo	ining (0,	0, 0) and
1. If $\bar{f} = (axy - z^3)\bar{i} + (a-2)x^2\bar{j} + (1-a)x^2\bar{j}$	$a)xz^2\overline{k}$ is), then $\int_{c} \overline{r}.d\overline{r}$			
irrotational, Then the values	of 'a' is		(a) 1	<u>.</u>	(b)	1	

(c)

If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, then $\nabla \cdot \vec{r} = \underline{}$

(d)

Page 2 Code No.: 17003 E

(8 pages)

(c)

6.	The value of	$\int_{0}^{1} \int_{0}^{1} \left(x^2 + y^2\right) dx dy$	is	•
----	--------------	---	----	---

(a) $\frac{3}{2}$

(b) 12

(c) $\frac{1}{2}$

(d)

7. If S is any closed surface enclosing as volume V and $\bar{f} = ax\bar{i} + by\bar{j} + cz\bar{k}$ then

$$\iint_{A} \vec{f} \cdot \vec{n} \, ds = \underline{\qquad}$$

(a) 3V

(b) (a+b+c)V

(c) $(a+b+c)^3V^3$

(d) 0

8. If R is any closed region of the xy-plane bounded by a simple closed curve C, then $\int ydx + xdy$ is

(a) 1

(b) n

(c) 0

(d) 2π

9. If f(x) is an odd function,

(a) f(x) = f(2x)

(b) f(x) = f(-x)

(c) f(x) = f(-2x)

(d) f(x) = -f(-x)

Page 3 Code No.: 17003 E

 $10. \quad \int_{0}^{\pi} \sin mx \sin x \, dx \qquad \qquad \text{(if } m = n\text{)}$

(a) $\frac{\pi}{2}$

(b) π

(c) $\frac{\pi}{3}$

(d) 1

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) If \overline{r} is the position vector of any point P(x, y, z), prove that grad $r^n = nr^{n-2}\overline{r}$.

Or

(b) Prove that $div(r^n \overline{r}) = (n+3)r^n$. Deduce that $r^n \overline{r}$ is solenoidal iff n = -3.

12. (a) Evaluate $\int_{0}^{1} \int_{x}^{1} (x^2 + y^2) dy dx$.

Or

(b) Evaluate $\int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{\pi}{4}} \sin(x+2y) dx dy$.

Page 4 Code No.: 17003 E [P.T.O.]

13. (a) Evaluate $\int_{c} \overline{f} \cdot d\overline{r}$ where $\overline{f} = (x^2 + y^2)\overline{f} - 2xy\overline{f}$ and the bounded by y = 0, y = b, x = 0, x = a.

Or

- (b) Evaluate $\iint_{s} \overline{f} \cdot \overline{n} \, ds \qquad \text{where}$ $\overline{f} = (x + y^{2})\overline{i} 2x\overline{j} + 2yz\overline{k} \text{ and S is the surface}$ of the plane 2x + y + 2z = 6.
- 14. (a) Use Green's Thm in a plane to evaluate $\int_{c} (2x-y)dx + (x+y)dy \quad \text{where } C \quad \text{is the}$ boundary of the circle $x^2 + y^2 = a^2$ in the xy plane.

Or

(b) Using Stoke's theorem, evaluate $\int_{c} (\sin x - y) dx = \cos x dy \text{ where } C \text{ is the boundary of the triangle whose vertices are } (0, 0), (\pi/2,0), (\pi/2,1).$

Page 5 Code No.: 17003 E

15. (a) Find the half range sine series of f(x) = a in (0,l).

Or

(b) Find the half range cosine series of $f(x) = (\pi - x)^2$ in $(0, \pi)$.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

- 16. (a) Prove that grade $(\overline{f}.\overline{g}) = \overline{f} \times curl\overline{g} + \overline{g} \times curl\overline{f} + (\overline{f}.\nabla)\overline{g} + (\overline{g}.\nabla)\overline{f}$
 - (b) If $r = a \cos wt + b \sin wt$ where a, b are constant vectors and w is a constant, prove that $\overline{r} \times \frac{dr}{dt} = w(\overline{a} \times \overline{b})$ and $\frac{d^2r}{dt^2} + w^2\overline{r} = 0$.
- 17. (a) Find the area of the region D bounded by the parabola $y = x^2$ and $x = y^2$.

Or

(b) Evaluate $\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-z} xyz \, dx \, dy \, dz.$

Page 6 Code No.: 17003 E

18. (a) Evaluate $\iint_{S} \overline{f} \cdot \overline{n} \, dS \qquad \text{where}$ $\overline{f} = (x^3 - yz)\overline{i} - 2x^2y\overline{j} + 2\overline{k} \quad \text{and} \quad S \quad \text{is the surface of the cube bounded by } x = 0, \ y = 0,$ $z = 0, \ x = a, \ y = a \text{ and } z = a.$

Or

- (b) Evaluate $\iint_{S} \overline{f} \cdot \overline{n} dS \qquad \text{where}$ $\overline{f} = 4x\overline{i} 2y^{2}\overline{j} + z^{2}\overline{k} \quad \text{and} \quad S \quad \text{is the surface}$ bounding the region $x^{2} + y^{2} = 4$, z = 0 and z = 3.
- 19. (a) Verify Stoke's theorem for $\bar{f} = (x^2 y^2)\bar{i} + 2xy\bar{j}$ in the rectangular region x = 0, y = 0, x = a, y = b.

Or

(b) Verify Green's theorem for $\int_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where C is the boundary of the region defined by the lines x = 0, y = 0 and x + y = 1.

20. (a) Find the half range cosine series for the function $f(x) = x^2$ in $0 \le x \le \pi$ and hence find the sum of the series $1 - \frac{1}{2^2} + \frac{1}{3^2} - \dots$

Or

(b) Prove that the function f(x) = x can be expanded in a series of cosines in $0 < x < \pi$ as $x = \frac{\pi}{2} - \frac{4}{\pi} \left(\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \dots \right)$. Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

Page 7 Code No.: 17003 E

Page 8 Code No.: 17003 E