No.	:	***************************************
	No.	No.:

Code No.: 10421 E Sub. Code: CMMA 41

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023.

Fourth Semester

Mathematics - Core

ABSTRACT ALGEBRA

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A - (10 × 1 = 10 marks)

Answer ALL questions.

Choose the correct answer:

- 1. In the group (z_8, \oplus) , the order of 2 is
 - (a) 0
- (b)
- (c) 3
- (d) 4
- 2. In the group $\{1, w, w^2\}$, $w^3 = 1$, under usual multiplication, the identity element is
 - (a) 0
- (b) 1
- (c) 2
- (d) 3

- 8. In the ring $(Q,+,\cdot)$, identity element is
 - (a) 0
- (b)
- (c) 2
- (d) 3
- 9. If $f: R \to R'$ be an ring isomorphism then f(-a) =_____ $\forall a \in R$.
 - (a) -f(a)
- (b) a
- (c) f(a)
- (d) a
- 10. If $f: R \to R'$ is 1-1, then $Kref = \underline{\hspace{1cm}}$
 - (a) R
- (b) R'
- (c) 0'
- (d) {0}

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL the questions, choosing either (a) or (b).

11. (a) In R^* , $a^*b = \frac{ab}{2}$ then prove that $(R^*,*)$ is a group.

Or

(b) Let G be a group and $a \in G$. Let $H_a = \{x \mid x \in G \text{ and } ax = xa\}$. Prove that H_a is a subgroup of G.

Page 3 Code No.: 10421 E

- 3. The generator of the cyclic group (z_8,\oplus) is
 - (a) 0
- (b) 2
- (c) :
- (d) 6
- 4. If H is a subgroup of G, then $a \in H \Rightarrow aH =$
 - (a) H
- (b) a
- (c) φ
- (d) G
- 5. In the quotient group G/N, N is ______
 - (a) a subgroup of G
 - (b) a cyclic sub group of G
 - (c) a normal sub group of G
 - (d) an abelian sub group of G
- 6. The product of two even permutation is ______ permulation.
 - (a) Cycle
- (b) Odd
- (c) Even
- (d) Odd and even
- 7. In the ring $(Z,+,\cdot)$, units are _____
 - (a) 0
- (b) 1
- (c) -1
- (d) 1, -1

Page 2 Code No.: 10421 E

(a) Prove that a subgroup of cyclic group is cyclic.

Or

- (b) State and prove Euler's theorem.
- 13. (a) Show that if a group G has exactly one subgroup H of given order, then prove that H is a normal subgroup of G.

Or

- (b) Let $f: G \to G'$ be an isomorphism. Let $a \in G$. Then prove that order of a is equal to the order of f(a).
- 14. (a) Show that every field is an integral domain.

Or

- (b) Prove that any finite integral domain is a field.
- 15. (a) Let R and R' be rings and $f: R \to R'$ be a homomorphism. Then S is an ideal of R, prove that f(S) is an ideal of R'.

Or

(b) Let f: R→R' be a homomorphism. Prove that Kerf is an ideal of R'.

Page 4 Code No.: 10421 E [P.T.O.]

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL the questions, choosing either (a) or (b).

16. (a) Let A and B be two subgroups of a group G. Then prove that AB is a subgroup of G iff AB = BA.

Or

- (b) If H, K are two finite subgroups of a group G, then show that $|HK| = \frac{|H||K|}{|H \cap K|}$.
- 17. (a) Let H be a subgroup of a group G. Then prove that
 - (i) $aH = bH \Rightarrow a^{-1}b \in H$
 - (ii) $a \in bH \Rightarrow a^{-1} \in Hb^{-1}$
 - (iii) $a \in bH \Rightarrow aH = bH$.

Or

- (b) State and prove Lagrange's theorem.
- 18. (a) State and prove Cayley's theorem.

Or

(b) If a permutation $p \in s_n$ is a product of r transposition and also a product of s transpositions, then prove that either r and s are both even or both odd.

Page 5 Code No.: 10421 E

19. (a) Let R be a commutative ring with identity. Prove that a_n ideal M of R is maximal iff R_M is a field.

Or

- (b) Prove that Z_n is an integral domain \Leftrightarrow n is prime.
- 20. (a) State and prove fundamental theorem of homomorphism.

Or

(b) Prove that the only isomorphism $f: Q \to Q$ is the identity map.

Page 6 Code No.: 10421 E