Code No.: 10420 E

Sub. Code: CMMA 31

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023

Third Semester

Mathematics - Core

SEQUENCES AND SERIES

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A —
$$(10 \times 1 = 10 \text{ marks})$$

Answer ALL questions.

Choose the correct answer:

- 1. The g.l.b. of the sequence $1, \frac{1}{2}, \frac{1}{3}, \dots \frac{1}{n}, \dots$ is _____
 - (a) 1
 - (b) 0
 - (c) ∞
 - (d) $\frac{1}{2}$

- 6. $\sum \frac{1}{4n^2-1} = -----$
 - (a) $\frac{1}{2}$
- (b) $\frac{1}{4}$
- (c) -1
- (d) 0
- 7. The series $\sum \frac{1}{(\log n)^n}$ is
 - (a) divergent
- (b) diverges to ∞
- (c) convergent
- (d) none
- 8. The series $\sum \frac{x^n}{n}$ converges if ______
 - (a) x=1
- (b) x > 1
- (c) x = 0
- (d) x < 1
- 9. $\sum (-1)^n \left(1 + \frac{1}{n}\right) \cdots$
 - (a) is oscillating
- (b) diverges
- (c) converges
- (d) none
- 10. The series $\sum (-1)^n \sin\left(\frac{1}{n}\right)$
 - (a) diverges
- (b) converges
- (c) is constant
- (d) converges to $\frac{1}{x}$

Page 3 Code No.: 10420 E

- $\lim_{n\to\infty}\frac{1}{n^2}=\frac{1}{n^2}$
 - (a) (
- (b) o
- (c)
- (d) $\frac{1}{n}$
- 3. $\lim_{n\to\infty} (n^{1/n}) = ---$
 - (a) (
- (b) or
- (c)
- (d) $\frac{1}{n}$
- $4. \qquad \lim_{n\to\infty} \frac{3n-4}{2n+7} = ---$
 - (a) $\frac{3}{2}$
- (b) $\frac{2}{3}$
- (c) -
- (d) $\frac{-4}{7}$
- 5. The series $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$
 - (a) converges to zero
 - (b) diverges to ∞
 - (c) converges to one
 - (d) diverges to -∞

Page 2 Code No.: 10420 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

11. (a) State and prove Cauchy - Schwarz inequality.

Or

- (b) Define bounded sequence. Give an example.
- 12. (a) Show that $(-1)^n$ is not a convergent sequence.

Or

- (b) Show that if $(a_n) \to a$ and $K \in \mathbb{R}$ then $(Ka_n) \to Ka$.
- 13. (a) Show that $\lim_{n\to\infty} \frac{n!}{n^n} = 0$.

Or

- (b) Prove that any Cauchy sequence is a bounded sequence.
- 14. (a) Test the convergence of the series $\frac{1}{3}x + \frac{1}{3} \cdot \frac{2}{5}x^2 + \frac{1}{3} \cdot \frac{2}{5} \cdot \frac{3}{7}x^3 + \cdots$
 - Test the convergence of $\sum \frac{n^3 + a}{2^n + a}$.

Page 4 Code No.: 10420 E

15. (a) Show that the series $\sum \frac{(-1)^{n+1}}{\log(n+1)}$ converges.

Or

(a) Prove that $\sum_{n=2}^{\infty} \left(\frac{\sin n}{\log n} \right)$ is convergent.

PART C - (5 × 8 = 40 marks)

Answer ALL questions choosing either (a) or (b).

- 16. (a) For any two real numbers x and y, prove
 - (i) $|x+y| \le |x| + |y|$
 - (ii) $|x-y| \ge |x| |y|$.

Or

- (b) (i) If a,b,c are positive real numbers such that $a^2 + b^2 + c^2 = 27$ then show that $a^3 + b^3 + c^3 \ge 81$.
 - (ii) Define monotonic sequences. Give an for each example.

Page 5 Code No.: 10420 E

- 17. (a) (i) Prove that a sequence cannot converge to two different limits.
 - (ii) Prove if $(a_n) \rightarrow a$ and $a_n \ge 0$ for all n then $a \ge 0$.

Or

- (b) Discuss the behaviour of the geometric sequence (r^n) .
- 18. (a) State and prove Cauchy's first limit theorem.

Or

- (b) State and prove comparison test.
- 19. (a) State and prove Kummer's test.

Or

- (b) State and prove Gauss's test.
- 20. (a) State and prove Dirichlet's test.

Or

(b) State and prove Abel's test.

Page 6 Code No.: 10420 E