(7 pages)

Reg. No.:

Code No.: 10418 E Sub. Code: CMMA 11

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023.

First Somester

Mathematics - Core

CALCULUS AND CLASSICAL ALGEBRA

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum : 75 marks

PART A ~~ (10 × 1 ≈ 10 marks)

Answer ALL questions.

Choose the correct answer:

- - (a) involute

- (b) evolute
- (c) curvature
- (d) envelope

- - (a) half

- (b) square
- (c) reciprocal
- (d) square root

of its

- 3. $\Gamma(n+1)$
 - (a) $(n-1)\Gamma(n)$
- (b) (n+1)!
- (c) $(n+1)\Gamma(n)$
- (d) n!
- 4. $\beta\left(\frac{1}{2},\frac{1}{2}\right)$
 - (a) π

(b) $\sqrt{\pi}$

(c) $\frac{\pi}{2}$

(d) $\frac{\sqrt{\pi}}{2}$

- $5. \qquad \int_{0.0}^{4.4} dx \, dy$
 - (a) 4

(b) 16

(c) 12

(d) 8

Page 2 Code No.: 104

(a) a^3

(b) a

(c) a^5

- (d) a
- - (a) even number of
 - (b) no
 - (c) odd number of
 - (d) either (a) or (b)
- 8. The sum of roots of the equation $ax^4 + 4bx^3 + 6cx^2 + 4dx + e = 0$ is ————
 - (a) -4b

(b) $\frac{4b}{a}$

(c) $\frac{-4b}{a}$

- (d) 4b
- - $(a)^* -1$

(b)

(c) ± 1

(d) 0

Page 3 Code No.: 10418 E

- 10. The number of positive roots of the equation $x^5 6x^2 4x + 5 = 0$ is _____
 - (a) atleast two
- (b) atmost one
- (c) atleast one
- (d) atmost two

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

11. (a) Show that the radius of curvature at any point of the catenary $y = c \cosh \frac{x}{c}$ is equal to the length of the portion of the normal intercepted between the curve and the axis of x.

Or

- (b) Develop an equation of a curve which forms the envelope of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{k^2 a^2} = 1 \text{ where 'a' is the parameter.}$
- 12. (a) Change the order of integration in $\int_{0}^{a} \int_{\frac{x^{2}}{a}}^{2a-x} xy \ dx \ dy \text{ and evaluate it.}$

Or

(b) Using Jacobians, evaluate $\iint_{R} (x-y)^4 e^{x+y} dx dy \text{ where } R \text{ is the square }$ with vertices (1,0),(2,1),(1,2) and (0,1).

Page 4 Code No.: 10418 E

[P.T.O.]

13. (a) Evaluate:

(i)
$$\int\limits_0^{\infty}e^{-v^2}dv$$

(ii) $\int\limits_0^{\pi}\sin^{10}\theta\,d\theta$

Or

- (b) Evaluate the integral $\iint x^p y^q dy dx$ over the triangle x > 0, y > 0, $x + y \le 1$ in terms of Gamma functions.
- 14. (a) Solve the equation $81x^3 18x^2 36x + 8 = 0$ whose roots are in harmonic progression.

Or

- (b) If a+b+c+d=0, show that $\frac{a^5+b^5+c^5+d^5}{5} = \frac{a^2+b^2+c^2+d^2}{2}$ $\frac{a^3+b^3+c^3+d^3}{3}$.
- 15. (a) Increase by 7, the roots of the equation $3x^4 + 7x^3 15x^2 + x 2 = 0.$ Or
 - (b) Show that the equation $x^7 3x^4 + 2x^3 1 = 0$ has at least four imaginary roots.

Page 5 Code No.: 10418 E

PART C = (5 × 8 = 40 marks) Answer ALL questions, choosing either (a) or (b).

16. (a) Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Or

- (b) (i) Find the co-ordinates of the centre of curvature of the curve xy 2 at the point (2, 1).
 - (ii) Prove that the radius of curvature at any point of cycloid $x = a(\theta + \sin \theta)$; $y = a(1 \cos \theta)$ is $4a \cos \frac{\theta}{2}$.
- 17. (a) Evaluate $\iiint xyz dx dy dz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.

Or

(b) Use the substitution x + y + z = u, y + z = uv, z = uvw to evaluate the integral $\iiint [xyz(1-x-y-z)]^{\frac{1}{2}} dx dy dz \text{ taken over the tetrahedral volume enclosed by the planes } x = 0, y = 0, z = 0 \text{ and } x + y + z = 1.$

Page 6 Code No.: 10418 E

(a) Establish relation between Beta and Gamma functions.

Or

- (b) Evaluate in terms of Gamma functions, the integral $\iiint x^p y^q z' dx dy dz$ taken over the volume of the tetrahedron given by $x \ge 0$, $y \ge 0$, $z \ge 0$ and $x + y + z \le 1$.
- 19. (a) Find the condition that the roots of the equation $ax^3 + 3bx^2 + 3cx + d = 0$ may be in Geometric progression and hence solve $27x^3 + 42x^2 28x 8 = 0$, whose roots are in geometric progression.

Or

- (b) Show that the sum of the eleventh powers of the roots of $x^7 + 5x^4 + 1 = 0$ is zero.
- 20. (a) Solve the equation: $6x^{6} - 35x^{5} + 56x^{4} - 56x^{2} + 35x - 6 = 0.$

Or

(b) Solve the equation: $x^4 + 20x^3 - 143x^2 + 430x + 462 = 0 \text{ by}$ removing its second term.

Page 7 Code No.: 10418 E