Code No.: 10296 E

Sub. Code: AMMA 63

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023.

Sixth Semester

Mathematics - Core

NUMBER THEORY

(For those who joined in July 2020 only)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. If a and b are any positive integers, then there exist a positive n such that $n \ge b$ by
 - (a) Well ordering principle
 - (b) Archimedean property
 - (c) Finite Induction principle
 - (d) Binomial theorem

- 2. For $n \ge 1$, $\frac{1.3.5....(4n-1)}{[1.3.5....(2n-1)]^2} {2n \choose n}$
 - (a) $\binom{4n}{2n}$
 - (b) $\binom{4n}{n}$
 - (c) $\binom{2n}{n}$
 - (d) $\binom{4n}{3n}$
- 3. Match for integers a, b, c
 - (i) a | 1
- (1) a|c
- (ii) $a \mid b$ and $b \mid a$
- (2) $a = \pm 1$
- (iii) a|b and c|d
- (3) $a = \pm b$
- (iv) a|b and b|c
- (4) ac|bd

- (a) (i) -2, (ii) -3, (iii) -1, (iv) -4
 (b) (i) -2, (ii) -3, (iii) -4, (iv) -1
- (c) (i) -1, (ii) -2, (iii) -3, (iv) -4
- (d) (i) 2, (ii) 4, (iii) 3, (iv) 1
 - Page 2 Code No.: 10296 E

- 4. If a and b are integers, with $b \neq 0$, then there exist unique integers q and r such that a = qb + r where the value of r is
 - (a) $0 \le r \le |b|$
- $0 \le r \le |a|$
- (c) $0 \le r < |b|$
- (d) 0 < r < |b|
- 5. If p is a prime and $p \mid ab$, then -
 - (a) p|a and p|b
- (b) $p \times a$ and $p \times b$
- (c) pla or plb
- (d) none of these
- 6. There is an infinite number of primes of the form
 - (a) 4n
- (b) 4n+1
- (c) 4n+2
- (d) 4n+3
- 7. Which of the following is true?
 - (i) $-56 \equiv 9 \pmod{7}$
 - (ii) $-11 \equiv 9 \pmod{7}$
 - (a) (i) alone
 - (b) (ii) alone
 - (c) (i) and (ii) both true
 - (d) both false

- 8. If 'a' is a solution of $p(x) \equiv 0 \pmod{n}$ and $a \equiv b \pmod{n}$, then———
 - (a) b is also a solution
 - (b) b need not be a solution
 - (c) b is sometime a solution
 - (d) the value of b is undetermined
- 9. By Fermat's method factorize 119143 which is
 - (a) $352^2 69^2$
 - (b) (352+69)(352-69)
 - (c) 421.283
 - (d) All the above
- 10. If p is a prime, then ———— for integer a
 - (a) $a^p \equiv 1 \pmod{p}$
 - (b) $a^p \equiv a \pmod{p}$
 - (c) $a^p \equiv 0 \pmod{p}$
 - (d) $a^p \not\equiv a \pmod{p}$

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions choosing either (a) or (b).

11. (a) State and prove Archimedean property.

Or

(b) Prove by mathematical induction

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

12. (a) If K > 0, prove that $\gcd(Ka, Kb) = K \gcd(a, b)$.

Or

- (b) Find the gcd (12378, 3054).
- 13. (a) Prove that $\sqrt{2}$ is irrational.

Or

(b) If the n>2 terms of the arithmetic progression P, P+d, P+2d, P+(n-1) d n are all prime numbers, then the common difference d is divisible by every prime 'q' q<n.</p>

Page 5 Code No.: 10296 E

17. (a) State and prove Division algorithm.

Or

- (b) State and prove Euclidean Algorithm.
- 18. (a) There are an infinite number of primes.

Or

- (b) State and prove fundamental theorem of Arithmetic.
- (a) State and prove Chinese remainder theorem.

Or

- (b) Let n>0 be fixed and a, b, c, d be arbitrary integers then prove the following properties.
 - (i) $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$
 - (ii) $a \equiv a \pmod{n}$
 - (iii) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $a \equiv c \pmod{n}$
 - (iv) If $a \equiv b \pmod{n}$, then $a^k = b^k \pmod{n}$.
- 20. (a) State and prove Wilson theorem.

Or

(b) If P is a prime, prove that $a^p = a \pmod{p}$ for any integer a.

Page 7 Code No.: 10296 E

14. (a) If $ca = cb \pmod{n}$, prove that $a = b \pmod{n/d}$, where $d = \gcd(c, n)$.

Or

- (b) The linear congruence $ax = b \pmod{n}$ has a solution if and only if $d \mid b$, where $d = \gcd(a, n)$. If $d \mid b$, prove that if has d mutually in congruent solutions modulo n.
- 15. (a) State and prove Fermat's little theorem.

. . . Toward's mathed by C. I'. C.

(b) Illustrate Fermat's method by finding factor of 119143.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

16. (a) State and prove Binomial theorem.

O

(b) Illustrate a proof of second principle of finite induction for lucas sequence 1, 3, 4, 7, 11, 18, 29, 47, 76...

Page 6 Code No.: 10296 E