(6 pages)	Reg. No. :	
Code No.: 10	293 E	Sub. Code : AMMA 5
B.Sc. (CBCS) DEC	GREE EX	AMINATION, APRIL 2023
	Fifth Se	emester
. N	Iathemat	ics — Core

REAL ANALYSIS
(For those who joined in July 2020 only)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

- 1. If M is a discrete metric space then B(a, 4) is
 - (a) $\{a\}$
- (b) *M*
- (c) ø
- (d) 4

- 2. Z is
 - (a) not open in R
- (b) open in R
- (c) not closed
- (d) an interval

- 8. $\{(-n, n)/n \in N\}$ is an open cover for _____
 - (a) R
- (b) N
- (c) Z
- (d) G
- 9. In R, (5, 6) is a
 - (a) Closed Set
- (b) Compact
- (c) Not a compact set (d)
 - d) None
- 10. Any continuous function $f:[a,b] \to \mathbb{R}$ is
 - (a) onto
- (b) 1-1
- (c) open
- (d) not onto

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions by choosing (a) or (b).

11. (a) Define discrete metric d. Prove that d is a metric on M.

Or

- (b) Let (M, d) be a metric space. Let $A, B \subseteq M$. Then prove the following:
 - (i) $A \subseteq B \Rightarrow Int A \subseteq Int B$
 - (ii) $Int(A \cap B) = Int A \cap Int B$.

Page 3 Code No.: 10293 E

- 3. Which is not correct?
 - (a) $A \subset \overline{A}$
- (b) $Int A \subset A$
- (c) $Int A \subset \overline{A}$
- (d) $\overline{A} \subset \operatorname{int} A$
- 4. $D(Q) = _____$
 - (a) Q
- (b) φ
- (c) R
- (d) Z
- 5. If $f: R \to R$ is continuous at a then w(f, a) is
 - (a) 0
- (b) a
- (c) 1
- (d) ∞
- 6. If $f: R \to R$ which is uniformly continuous?
 - (a) $f(x) = x^2$
- (b) $f(x) = \sin x$
- (c) $f(x) = \frac{1}{x}$
- (d) none
- 7. Choose the correct statement
 - (a) R is connected
 - (b) Q is connected
 - (c) A subspace of a connected space is connected
 - (d) Union of two connected subsets of a metric space is connected

Page 2 Code No.: 10293 E

 (a) Let (M, d) be a metric space. Prove that any convergent sequence in M is a Cauchy Sequence.

Or

- (b) Prove that any discrete metric space is complete.
- 13. (a) Define Uniformly Continuous Function. Prove that the function $f:(0,1) \to \mathbb{R}$ define by $f(x) = \frac{1}{x}$ is not uniformly continuous.

Or

- (b) Prove : $f: \mathbb{R} \to \mathbb{R}$ is continuous at $a \in \mathbb{R}$ $\Leftrightarrow w(f, a) = 0$.
- 14. (a) Prove that any continuous image of a connected set is connected.

Or

(b) Define a connected set. Prove that any discrete metric space M with more than one point is disconnected.

Page 4 Code No.: 10293 E [P.T.O.]

 (a) Prove that any compact subset A of a metric space M is bounded.

Or

(b) Define totally bounded metric space. Prove that any compact metric space is totally bounded.

PART C - (5 × 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

16. (a) For $p \ge 1$, let l_p denote the set of all sequences (x_n) such that $\sum_{n=1}^{\infty} |x_n|^p$ is convergent. Define $d(x, y) = \left\{ \sum_{n=1}^{\infty} (x_n - y_n)^p \right\}^{\frac{1}{p}}$ where $x = (x_n)$ and $y = (y_n)$. Prove that d is a metric on l_p .

Or

- (b) Let (M, d) be a metric space. Let x, y be two distinct points of M. Prove that there exists two disjoint open balls with centres x and y respectively.
- 17. (a) Prove that \mathbb{R}^n with usual metric is complete. Or
 - (b) State and prove Cantor's intersection theorem.

Page 5 Code No.: 10293 E

18. (a) If (M_1, d_1) and (M_2, d_2) are two metric spaces and $a \in M_1$ then prove that $f: M_1 \to M_2$ is continuous at a $\Leftrightarrow (x_n) \to a \Rightarrow (f(x_n)) \to f(a)$.

Or

- (b) Let f: [a, b] → R be a monotonic function. Prove that set of points of [a, b] at which f is discontinuous is countable.
- 19. (a) Let A be a connected subset of M, $A \subseteq B \subseteq \overline{A}$. Show that \overline{A} is connected.

Or

- (b) Prove: A subspace of ℝ is connected ⇔ is is an interval.
- 20. (a) State and prove Heine Borel Theorem.

Or

(b) Prove : A metric space (M, d) is totally bounded \Leftrightarrow every sequence in M has a Cauchy Subsequence.

Page 6 Code No. : 10293 E