Code No.: 10292 E Sub. Code: AMMA 51

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023

Fifth Semester

Mathematics — Core

LINEAR ALGEBRA

(For those who joined in July 2020 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- Which of the following is a vector space under usual addition and scalar multiplication?
 - (a) $V = \{a + b\sqrt{2} + c\sqrt{3}/a, b, c \in Q\}$ over Q
 - (b) Z over Q
 - (c) Q[x] over R
 - (d) Z over Z_5

- 6. The norm of the vector in $V_3(R)$ with standard inner product (1, 2, 3) is ———
 - (a) 5
- (b) $\sqrt{15}$
- (c) $\sqrt{14}$
- (d) $3\sqrt{38}$
- 7. The inverse of the matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ is $\frac{1}{0}$
 - (a) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
- (b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
- (c) $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
- (d) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- 8. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $|A| = \frac{a}{a}$
 - (a) ad-bc
- (b) ab-cd
- (c) ac-bd
- (d) ab-dc
- 9. The characteristic polynomial of the matrix $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is ———
 - (a) x^2
- (b) $x^2 1$
- (c) $1-x^2$
- (d) x-1

Page 3 Code No.: 10292 E

- 2. The Kernel of the linear transformation $T: V_3(R) \to V_3(R)$ defined by T(a,b,c) = (a,b,0) is
 - (a) $\{(0,0,0)\}$
- (b) $\{(0,0,c)/c \in R\}$
- (c) $\{(c,0,0)/c \in R\}$ (d)
 - $\{(0,c,0)/c \in R\}$
- 3. If $S = \{(1,0,0), (2,0,0), (3,0,0)\}$ in $V_3(R)$ then L(S) = ----
 - (a) $\{(0,x,0)/x \in R\}$ (b) $\{(0,0,x)/x \in R\}$
 - (c) $\{(x,0,0)/x \in R\}$ (d) $\{(0,0,0)\}$
- 4. $\dim V_n(R) = -$
 - (a) $\frac{n-1}{2}$
- (b) n+1
- (c) n-1
- (d) r
- 5. The matrix of the linear transformation $T:V_3(R)\to V_2(R)$ given by T(a,b,c)=(a+b,2c-a) with respect to the standard basis is ————
 - $\begin{pmatrix}
 1 & 1 \\
 1 & 0 \\
 0 & 2
 \end{pmatrix}$
- (b) $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 2 \end{pmatrix}$
- (c) $\begin{pmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 0 \end{pmatrix}$
- (d) $\begin{pmatrix} 0 & 2 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$

Page 2 Code No.: 10292 E

- 10. The eigen values of $\begin{pmatrix} 3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1 \end{pmatrix}$ are
 - (a) 1, 1, 2
- (b) 3, 5, 3
- (c) 3, 4, 1
- (d) 3, 0, 0

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) If A and B are subspaces of V prove that $A+B=\{v\in V\,|\,v=a+b,a\in A,\,b\in B\}$ is a subspace of V. Further show that A+B is the smallest subspace containing A and B.

Or

- (b) Show that $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(a,b) = (2a-3b, a+4b) is a linear transformation.
- 12. (a) Prove that $S = \{(1,0,0),(0,1,0),(1,1,1),(1,1,0)\}$ spans the vector space $V_3(R)$ but is not a basis.

Or

(b) Prove that any two bases of a finite dimensional vector space V have the same number of elements.

Page 4 Code No.: 10292 E [P.T.O.]

O

- (b) Let W₁ and W₂ be subspaces of a finite dimensional inner product space. Show that (W₁ + W₂)[⊥] = W₁[⊥] ∩ W₂[⊥].
- 14. (a) Find the characteristic equation of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.

Or

- (b) Show that a square matrix A is involutory iff $A = A^{-1}$.
- 15. (a) Let f be the bilinear form defined on $V_2(R)$ by $f(x,y) = x_1y_1 + x_2y_2$ where $x = (x_1,x_2)$ and $y = (y_1,y_2)$. Find the matrix of f with respect to the basis $\{(1,1), (1,2)\}$.

Or

(b) State and prove Cayley Hamilton theorem.

Page 5 Code No.: 10292 E

18. (a) Let V be a finite dimensional inner product space. Let W be a subspace of V. Prove that $V = W \oplus W^{\perp}$.

Or

- (b) Apply Gram Schmidt process to construct an orthonormal basis for $V_3(R)$ with the standard inner product for the basis $\{V_1, V_2, V_3\}$ where $V_1 = (1,0,1)$, $V_2 = (1,3,1)$, $V_3 = (3,2,1)$.
- (a) P.T. any square matrix A can be uniquely expressed as the sum of a Hermitian matrix and a skew Hermitian matrix.

 Or
 - (b) Find the inverse of the matrix $\begin{bmatrix} 3 & 3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ using Cayley Hamilton theorem.
- 20. (a) Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$.
 - (b) Reduce the quadratic form $x_1^2 + 4x_1x_2 + 4x_1x_3 + 4x_2^2 + 16x_2x_3 + 4x_3^2$ to the diagonal form using Lagrange's method.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 600 words.

- 16. (a) Let V be a vector space over F and W a subspace of V. Let $V/W = \{W+V/v \in V\}$. Show that V/W is a vector space over F under the following operations.
 - (i) $(W + V_1)(W + V_2) = W + V_1 + V_2$
 - (ii) $\alpha(W+V_1)=W+\alpha V_1$.

Or

- (b) Let V be a vector space over a field F. Let A and B be subspaces of V. Show that $\frac{A+B}{A} = \frac{B}{A \cap B}.$
- 17. (a) Prove that any vector space of dimension n over a field F is isomorphic to $V_n(F)$.

Or

- (b) Let V be a vectors space over a field F and S be a non-empty subset of V prove that
 - (i) L(S) is a subspace of V
 - (ii) $S \subseteq L(S)$
 - (iii) If W is any subspace of V such that $S \subseteq W$, then $L(S) \subseteq W$ (i.e). L(S) is the smallest subspace of V containing S.

Page 6 Code No.: 10292 E