(7 p	ages) Reg. No.:	3.	Fo	r group (\mathbb{Z}_{12} , \oplus), the number of generators is
Со	de No. : 10291 E Sub. Code : AMMA 41		(a)	4 (b) 3
	CONCENTRATION APRIL 2023		(c)	2 (d) 5
B.S	Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023.	4.	Ch	oose the correct statement from the following
	Fourth Semester Mathematics – Core		sta	tements.
	ABSTRACT ALGEBRA		(a)	
	(For those who joined in July 2020 only)		(b)	Every abelian group is cyclic
Tim	te: Three hours Maximum: 75 marks		(c)	Every element of a cyclic group is a generator of the group
	PART A — $(10 \times 1 = 10 \text{ marks})$		(d)	$(\mathbb{Q}, +, \cdot)$ is a cyclic group
	Answer ALL questions.	5.	The	e kernel of the homomorphism $f:(\mathbb{Z},+) \to \{1,-1\}$
	Choose the correct answer:		def	ined by $f(n) = \begin{cases} 1 & \text{if } n \text{ is even} \\ -1 & \text{if } n \text{ is odd} \end{cases}$, is
1.	In $(\mathbb{Z}_7 - \{0\}, \emptyset)$, the inverse of 3 is		(a)	2ℤ (b) ℤ
	(a) 2 (b) 3		(c)	{0} (d) {1, -1}
	(c) 4 (d) 5	C	m	
2.	The order of $-i$ in $(c^*,-)$ is	6.		e number of automorphisms of a cyclic group of er 'n' is
	(a) 2 (b) infinite		(a)	n (b) $\varphi(n)$
	(c) 1 (d) 4		(c)	n^2 (d) 1
			(-)	(4) 1
7:	If R is a commutative ring, then $\forall a,b \in R$,			PART B — $(5 \times 5 = 25 \text{ marks})$
••		·	Answe	er ALL questions, choosing either (a) or (b).
	(a) $(a-b)^2 = a^2 - b^2$	11.	(a)	Let H be a subgroup of a group G . Prove that
	(b) $(a+b)^2 = a^2 + b^2$			(i) the identity element of H is the same
	(c) $(a+b)^2 = a^2 + 2ab + b^2$			as that of G .
	$(d) (a+b)^2 \neq 0$			(ii) for each a ∈ H, the inverse of 'a' in H is the same as the inverse of 'a' in G.
8.	An example of an infinite commutative ring without identity is		(b)	Or
	(a) $(\mathbb{Z}, +, \cdot)$ (b) $(\mathbb{Z}_n, \oplus, \otimes)$		3 6	$ax = xa \forall x \in G$. Show that H is a subgroup
	(c) $(2\mathbb{Z}, +, \cdot)$ (d) $M_2(R)$			of G .
9.	The map $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = x^2 + 3$ is	12.	(a)	State and prove Lagrange's theorem. Or
	(a) a ring homomorphism (b) not a ring homomorphism		(b)	Let H be a subgroup of G . Prove that the number of left cosets of H is the same as the number of right cosets of H .
R.	(c) a ring isomorphism(d) a group homomorphism	13.	(a)	Let M and N be normal subgroups of a group G such that $M \cap N = \{e\}$. Show that every element of M commutes with every
10.	Let $f: \mathbb{C} \to \mathbb{C}$ defined by $f(z) = \overline{z}$. Then Kerf is			element of N. Or
	 (a) φ (b) {0} (c) {1} (d) {i} 		(b)	Let $f: G \to G'$ be a homomorphism. Prove that the Kernel K of f is a normal subgroup of G .

Page 3 Code No.: 10291 E

Page 4 Code No.: 10291 E [P.T.O.]

- 14. (a) If R is a ring such that $a^2 = a \forall a \in R$. Prove the following
 - (i) a+a=0
 - (ii) $a+b=0 \Rightarrow a=b$
 - (iii) ab = ba,

Or

- (b) Show that \mathbb{Z}_n is an integral domain iff n is prime.
- 15. (a) Show that R[x] is an integral domain iff R is an integral domain.

Or

(b) If $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = r where x = qn + r and $0 \le r \le n$, prove that f is a homomorphism.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Let G be the set of all real numbers except -1. Define * on G by a*b=a+b+ab. Show that (G,*) is a group.

Or

(b) Let A and B be two subgroup of a group G. Show that AB is a subgroup of G if and only if AB = BA.

Page 5 Code No.: 10291 E

20. (a) State and prove division algorithm.

Or

(b) State and prove fundamental theorem of homomorphism on rings.

17. (a) Show that a subgroup of a cyclic group is cyclic.

Or

- (b) Prove that a group G has no proper subgroups if it is a cyclic group of prime order.
- 18. (a) State and prove Cayley's theorem.

Or

- (b) Let N be a subgroup of a group G. Prove that the following are equivalent
 - (i) N is a normal subgroup of G
 - (ii) $aNa^{-1} = N \quad \forall a \in G$
 - (iii) $aNa^{-1} \le N \ \forall a \in G$
 - (iv) $ana^{-1} \in N \ \forall n \in N \ \text{and} \ a \in G$.
- (a) Let R be a commutative ring with identity. Show that R is a field iff R has no proper ideals.

Or

(b) Let R be a commutative ring with identity. Prove that an ideal M of R is maximal iff R_M is a field.

Page 6 Code No.: 10291 E