Sub. Code: SMPH 41/ Code No. : 20033 E AMPH 41

> B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

> > Fourth Semester

Physics - Core

## ELECTROMAGNETISM

(For those who joined in July 2017 - 2020)

Time: Three hours

Maximum: 75 marks

PART A —  $(10 \times 1 = 10 \text{ marks})$ 

Answer ALL questions.

Choose the correct answer:

- The unit Henry can also be written as
  - $V_S A^{-1}$
- $WbA^{-1}$
- $\Omega S$ (c)
- all (d)

- Velocity of electromagnetic wave in medium is
  - (a)  $C = \sqrt{\mu_0 / \varepsilon_0}$  (b)  $C = \sqrt{\mu \varepsilon}$
- - (c)  $C = \frac{1}{\sqrt{\mu \epsilon}}$
- Brewster's law is -
  - $\mu = \sin i_p$
- (b)  $\mu = \cos i_n$
- $\mu = \tan i_p$
- (d)  $\mu = \frac{1}{\tan i}$
- Refractive index of a medium is

- Magnetic induction -
  - (a)  $B = \phi \cdot A$

- (d) None

Page 3 Code No.: 20033 E

- Lenz's law is in accordance with the law of
  - (a) Conservation of changes
  - (b) Conservation flux
  - (c) Conservation of momentum
  - (d) Conservation of energy
- The relation connecting magnetic induction (B) and magnetic field intensity (H) is -
  - $\mu = B/H$ (a)
- $\mu = BH$
- (c)  $\mu = H/B$
- none
- Magnetic induction due to an infinitely long straight conductor placed in a medium of permeability  $\mu$  is
  - (a)
- $\mu I$ (c)
- Electro magnetic wages are
  - (a) transverse
  - (b) longtitudinal
  - (c) may be longtitudinal or transverse
  - neither longtitudinal nor transverse

Page 2 Code No.: 20033 E

- Induction coil is
  - an a.c transformer
  - (b) a d.c transformer
  - (c) an inverter
  - a dynamo (d)

PART B — 
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. Define self inductance of the coil. Give it (a) unit.

Or

- What (b) are eddy currents? Give the application.
- 12. Explain the Lorentz force on a moving (a) change.

Or

- (b) State and explain Ampere's circuital law.
- 13. Explain the Boundary conditions for (a) Magnetic induction (B).

Describe Hertz experiment to produce electromagnetic waves.

Page 4 Code No.: 20033 E

[P.T.O.]

14. (a) Derive the wave equation for magnetic field in a non-conducting medium.

Or

- (b) Explain the polarization of electro magnetic wages by reflection.
- 15. (a) Write a short note on earth inductor.

Oı

(b) What are the applications of induction coil? PART C — (5 × 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

 (a) Determine the self inductance of a coil by Owen's bridge method.

Or

- (b) Obtain the expression for the self inductance of a toroidal solenoid.
- (a) Write short note on Damping correction in Ballistic Galvanometer.

Or

(b) Obtain an expression for the magnetic induction at a point due to a long straight conductor carrying current.

Page 5 Code No.: 20033 E

18. (a) Derive the Maxwell's equation for material media.

Or

- (b) Derive an expression for poynting vector.
- 19. (a) Discuss the reflection and transmission of electromagnetic wave at a dielectric boundary for normal incidence.

Or

- (b) Obtain an expression for impedance of a dielectric to electric magnetic wave.
- 20. (a) Describe how the earths inductor can be used to determine earth's vertical field induction at a place.

Or

(b) Describe an induction coil and explain its working.

Page 6 Code No.: 20033 E