(6 pa	ges) Reg. No.:
Cod	e No.: 20445 E Sub. Code: CMPH 41
	B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.
	Fourth Semester
	Physics - Core
	HEAT AND THERMODYNAMICS
	(For those who joined in July 2021 – 2022)
Time	: Three hours Maximum : 75 marks
	PART A — $(10 \times 1 = 10 \text{ marks})$
	Answer ALL questions.
	Choose the correct answer:
1.	Liquid Helium below 2.19K is called
	(a) Helium I (b) Helium I
	(c) Nitrogen (d) Oxygen
2.	The inversion temperature of air is
	(a) > 0 (b) < 0
	(c) = 0 (d) None
8.	The efficiency of an Otto cycle is increased by increasing —
	(a) pressure ratio
	(b) compression ratio
	(c) temperature ratio
9.	(d) both (a) and (b) The entropy of an isolated system can never
J.	——————————————————————————————————————
	(a) increase
	(b) decrease
	(c) be zero
	(d) none of the mentioned
10.	The value of cp and cv depend on
	(a) temperature of the gas
	(b) γ and R
	(c) pressure of the gas
	(d) all of the mentioned
1911	PART B — $(5 \times 5 = 25 \text{ marks})$ Answer ALL questions, choosing either (a) or (b).
	Each answer should not exceed 250 words.
100	The should have the category and words.

Write short notes on Helium II.

temperature Explain.

Or

How adiabatic demagnetistaion produce low

Page 3 Code No.: 20445 E

11.

(a)

(b)

3.	What is the average velocity of the molecules of an ideal gas?				
	(a)	Infinity	(b)	Constant	
	(c)	Unstable	(d)	Zero	
4.	On which factor does the avenge kinetic energy of gas molecules depend?				
	(a)	Nature of the gas	(b)	Temperature	
	(c)	Volume	(d)	Mass	
5.	Heat transfer takes place according to which of the following law?				
	(a) Newton's second law of motion				
	(b) First law of thermodynamics				
	(c) Newton's law of cooling				
	(d)	Second law of the	rmody	ynamics	
6.	The unit of absorptive power is ———				
	(a)	T	(b)	Ts^{-1}	
	(c)	Ts	(d)	No unit	
7.	On a temperature entropy chart, Carnot cycle will be a				
	(a)	Rhombus	(b)	Rectangle	
	(c)	Triangle	(d)	Square	

Deduce an expression for the pressure of a gas on the basis of this Kinetic theory.

Page 2 Code No.: 20445 E

Or

- Deduce the equation of state for real gases (b) obtain expression for the critical constants of a gas.
- 13. Describe Forbe's method for determining the thermal conductivity of a metal rod.

Or

- Deduce stefans law of radiation from principles of thermo dynamics.
- (a) State and explain first law of thermo dynamics.

Or

- State Carnot's theorem deduce it from the (b) second law of thermo dynamics.
- Define entropy show that entropy remains 15. (a) constant in a reversible engine.

Or

Derive clasius clapeyron's equation.

Page 4 Code No.: 20445 E

[P.T.O.]

PART C - (5 × 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Explain liquification of Helium.

O

- (b) Discuss briefly refrigeratiors and air conditioning machines.
- 17. (a) Derive on the basis of kinetic theory of gases, laws for an ideal gas.

O

- (b) Obtain the expression for the viscosity of a gas in terms of mean free path.
- 18. (a) Explain lee's disc method determining thermal conductivity of a bad conductor.

Or

- (b) Define solar constant. Explain with necessary theory how the solar constant is determined.
- (a) Derive an expression for work done during adiabatic and isothermal process.

Or

(b) Explain the diesel engine cycle.

Page 5 Code No.: 20445 E

20. (a) What is T-S diagram? In what respect it is superior to the indicator diagram.

Or

(b) Derive Maxwell Thermodynamical relation.

Page 6 Code No.: 20445 E