Code No.: 10036 E Sub. Code: SMPH 53

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023.

Fifth Semester

Physics - Core

ATOMIC PHYSICS

(For those who joined in July 2017-2019)

Time: Three hours .

Maximum: 75 marks

PART A - (10 × 1 = 10 marks)

Answer ALL the questions.

Choose the correct answer:

- The classical expression for the electrical conductivity of a metal in terms of mass of electron, change of electron, concentration of electrons and collision time is given by
 - (a) mner
- (b) meτ/n
- (c) $me^2\tau/m$
- (d) $ne^2\tau^2/m$

- 2. The value of conductivity of metals σ is
 - (a) $\frac{ne^2\lambda V}{4T}$
- (b) $\frac{ne^2\lambda V}{4\alpha T}$
- (c) $\frac{n\alpha\lambda V}{4e^2T}$
- (d) $\frac{ne^2\lambda VT}{4\alpha}$
- All particles having the same e/m are focused at a single point in
 - (a) Thompson's method (b) Aston's method
 - (c) Bainbridge method (d) Dempster's method
- The two isotopes obtained in Thomson parabola method belongs to
 - (a) Hydrogen
- (b) Neon
- (c) Argon
- (d) Chlorin
- 5. Positive rays are also called as
 - (a) X-rays
- (b) Beta rays
- (c) Canal rays
- (d) Gamma rays
- 6. The energy equivalent of a mass unit is
 - (a) 1 eV
- (b) 1 MeV
- (c) 931 eV
- (d) 931 MeV

Page 2 Code No.: 10036 E

- Number of splitting lines in normal Zeeman effect
 is
 - (a) 1
- (b) 3
- (c) Above 3
- (d) None
- 8. Mosley law is
 - (a) $\gamma \propto z^2$
- (b) γ ∝ 2
- (c) $\gamma \propto \frac{1}{z}$
- (d) $\gamma \propto \frac{1}{z^2}$
- 9. In the characteristic spectrum of X-rays
 - (a) $K_a < K_B$
- (b) $K_{\alpha} > K_{\beta}$
- (c) $K_{\alpha} > L_{\alpha}$
- (d) $K_a = L_a$
- 10. In Lave method
 - (a) X-rays of continuous wavelength are used
 - (b) X-rays of monochromatic wavelength is used
 - (c) X-rays of continuous wavelength and monochromatic wavelength are used
 - (d) Visible light of all wavelengths are used

Page 3 Code No.: 10036 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Derive an expression for thermal conductivity of metals.

Or

- (b) Write a note on Wiedman-Franz's law.
- 12. (a) What are positive rays? Give its properties.

Or

- (b) What is mass spectrograph? What are its uses?
- 13. (a) Give an account of vector atom model.

Or

- (b) What are principal quantum number and orbital quantum number? Explain.
- 14. (a) Explain LS coupling and j-j coupling schemes.

Or

(b) Distinguish between normal and anamolous Zeeman effect.

Page 4 Code No.: 10036 E

[P.T.O.]

(a) Derive Bragg's law.

Or

(b) What is Mosley law? State its importance.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

 (a) Describe the Millikan method for determining the electric charge.

Or

- (b) Discuss in detail Band theory of solids.
- (a) Describe Thompson's Parabola method and explain how e/m of the positive ion is calculated.

Or

- (b) Describe Bainbridge mass spectrograph and explain how atomic masses are determined.
- 18. (a) State and explain Pauli's exclusion principle.

Or

(b) Describe how this principle assists in the interpretation of the periodic system of the elements.

Page 5 Code No.: 10036 E

 (a) Describe Stern-Gerlach experiment. Discuss the importance of the results.

Or

- (b) What is Zeeman effect? Discuss the quantum mechanical explanation of normal Zeeman effect.
- (a) Describe the Powder crystal method of studying crystal structure.

Or

(b) Outline the theory of Compton Scattering and derive an expression for the Compton shift.

Page 6 Code No.: 10036 E