Code No.: 10434 E Sub. Code: CMPH 31

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023

Third Semester

Physics - Core

ELECTRICITY AND ELECTROMAGNETISM

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. Electric field E =
 - (a) Fq²
- (b) F/q
- (c) qF
- (d) q/E
- 2. The Thomson coefficient (σ) is ———
 - (a) constant
- b) do not vary
- (c) not a constant (d)
 -) none

- 9. The poynting vector P is
 - (a) $P = E \times H$
- (b) $P = B \times H$
- (c) EH
- (d) BH
- 10. According to wave equation for electric field \overline{E}
 - (a) $\nabla . \overline{E} = \mu_0 \varepsilon_0 \left(\frac{\partial^2 E}{\partial t^2} \right)$
 - (b) $\nabla \times \overline{E} = \mu_0 \varepsilon_0 \left(\frac{\partial^2 E}{\partial t^2} \right)$
 - (c) $\nabla^2 E = \mu_0 \varepsilon_0 \left(\frac{\partial^2 E}{\partial t^2} \right)$
 - (d) $\nabla . \overline{E} = \frac{1}{\mu_0 \varepsilon_0} \left(\frac{\partial^2 E}{\partial t^2} \right)$

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Explain Seeback effect.

Or

(b) Explain Peltier effect.

Page 3 Code No.: 10434 E

- 3. Example for good conductor is
 - (a) plastic
- (b) ebonite
- (c) wood
- (d) copper
- 4. Capacitance of a capacitor C =
 - (a) V/Q
- (b) Q/V
- (c) V²Q
- (d) VQ
- 5. Magnetic permeability $\mu =$
 - (a) BH
- (b) H/B
- (c) B/H
- (d) BH2
- Unit for magnetisation (M) is
 - (a) Am
- (b) Am⁻³
- (c) Am-1
- (d) Am⁻²
- 7. The law of electromagnetic induction was given by
 - (a) Faraday
- (b) Henry
- (c) Fleming
- (d) Neumann
- The coefficient of coupling between two coils of self inductance L₁ and L₂
 - (a) $\sqrt{\frac{L_1}{L_2}}$
- (b) $\sqrt{L_1L_2}$
- (c) $\sqrt{\frac{L_2}{L_1}}$
- (d) $\frac{M}{\sqrt{L_1L_2}}$

Page 2 Code No.: 10434 E

12. (a) Derive an expression for the decay of current in L-R circuit.

Or

- (b) How will you determine high resistance by leakage?
- 13. (a) Define the following:
 - (i) Magnetic induction
 - (ii) Magnetic susceptibility.

O

- (b) Establish the relation $B = \mu_0(H + M)$.
- 14. (a) State and explain the laws of electromagnetic induction.

Or

- (b) State the faraday's law of electromagnetic induction. Deduce the faraday's law electromagnetic induction in the form $curl E = \frac{-\partial B}{\partial T}.$
- 15. (a) Explain transverse nature of electromagnetic radiation.

Or

(b) Write the Maxwell's equation in material medium.

Page 4 Code No.: 10434 E

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 600 words.

 (a) Using Gauss law, find the electric field intensity due to a line of charge.

O

- (b) Describe Kohlraush bridge experiment to determine the specific conductivity of a electrolyte.
- 17. (a) Derive an expression for the growth of charge in LCR circuit.

Or

- (b) Obtain an expression for the growth and decay of charge in a capacitor through a resistance.
- 18. (a) Give the theory, construction and working of a B.G.

Or

(b) Draw Desauty's bridge and explain how is it used to compare the two capacitances of two capacitors.

Page 5 Code No.: 10434 E

19. (a) Explain mutual inductance and state its units.

Or

- (b) Draw Owen's bridge circuit and state the condition for balance.
- 20. (a) Obtain Marwell's equations and explain their significance.

Or

(b) Explain the Hertz experiment for the production and detection of EM waves.

Page 6 Code No.: 10434 E