Code No.: 10305 E

Sub. Code: AMPH 52

B.Sc (CBCS) DEGREE EXAMINATION, APRIL 2023.

Fifth Semester

Physics - Core

SPECTROSCOPY

(For those who joined in July 2020 only)

Time: Three hours '

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- Which among the following is symmetric top molecule
 - (a) CH₃F
 - (b) HCI
 - (c) OCS
 - (d) C₂H₂I

- For a compound to be Raman active it should show 6.
 - (a) Dipole moment
 - (b) Polarizability
 - (c) Induced dipole moment
 - (d) Unsaturation
- The possible transitions for water molecule in UV visible region are
 - (a) $\sigma \sigma^*$
- (b) $n \rightarrow n^*$, $n \rightarrow n^*$
- (c) $\sigma \sigma^*$, $n \rightarrow n^*$
- The unit of absorbance is 8.
 - (a) cm
- (b) L mol-1 cm-1
- (c) Lg m-1 cm-1
- (d) no unit .
- The nuclei that doesn't give NMR signal is
 - (a) 15N
- (b) 11B
- (c) 19F
- (d) 31P
- The chemical shift (δ) in NMR spectrum has
 - (a) Dimensional
- (b) Dimensionless
- (c) No unit
- (d) Unit
- Page 3 Code No.: 10305 E

- The molecule which have all three principal moment of inertia different are called
 - (a) Assymmetric top molecules
 - (b) Spherical top molecules
 - (c) Linear molecule
 - (d) Symmetric top molecule
- Mid-IR region mainly consists of
 - (a) $4000 100 \text{ cm}^{-1}$
 - (b) 14000 4000 cm⁻¹
 - (c) 4000 400 cm⁻¹
 - (d) 400 100 cm⁻¹
- Overtones are mainly observed in
 - (a) Near IR
- (b) Mid IR
- (c) Far IR
- (d) Not in IR region
- In Raman spectroscopy the radiation lies in the
 - (a) Microwave region
- (b) Visible region
- (c) UV region
- (d) X-ray region

Page 2 Code No.: 10305 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

(a) Explain the theory of microwave spectroscopy.

- (b) Define:
 - Rotational constant (i)
 - (ii) Selection rule for rational spectra.
- (a) Outline the theory of IR spectroscopy.

Or

- (b) Explain analysis by IR techniques.
- (a) Explain the quantum theory of Raman effect.

Or

- (b) Describe Raman spectra of symmetric top molecules.
- (a) Explain transmittance and absorbance of UV spectroscopy.

Or

(b) Discuss briefly types of transitions in UV.

Page 4 Code No.: 10305 E

[P.T.O.]

15. (a) Write the application of NMR spectroscopy.

Or

(b) Define chemical shift in NMR. Write the rules for spin spin splitting.

PART C \leftarrow (5 × 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

 (a) Obtain the transition frequency in terms of B and J for a symmetric top molecule.

Or

- (b) Explain the diatomic molecules as a non rigid rotator.
- (a) Explain diatomic vibrating rotator in IR.

Or

- (b) Explain the theory of molecular vibrations.
- 18. (a) Explain the cause of Raman effect. Give its importance.

Or

(b) Explain structure determination from IR and Raman spectroscopy.

Page 5 Code No.: 10305 E

 (a) Explain the absorption laws in UV spectroscopy. Write the limitation of Beer Lambert law.

Or

- (b) Explain how does a UV spectrophotometer work.
- 20. (a) Explain origin of NMR signal.

Or

(b) Discuss briefly magnetic resonance imaging.

Page 6 Code No.: 10305 E