Code No.: 20675 E

Sub. Code: EECA 11

B.C.A. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

First Semester

Computer Application

Elective — DISCRETE MATHEMATICS

(For those who joined in July 2023 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. A binary relation on a set A is a subset of
 - (a) Set A
- (b) Set $A \times \text{Set } A$
- (c) Set B Set B
- (d) Set $A \cup \operatorname{Set} A$
- 2. A relation represented by "A set of ordered pairs where each element is related to itself" is represented in
 - (a) Symmetric relation
 - (b) Reflexive relation
 - (c) Transitive relation
 - (d) Antisymmetric relation

- 7. The transpose of a matrix is obtained by
 - (a) Changing all elements to ones
 - (b) Changing all elements to zeros
 - (c) Interchanging its row and columns
 - (d) Negating all elements
- 8. What is the determinant of a 2×2 matrix with elements a, b, c and d?
 - (a) ad bc
- (b) ac bd
- (c) a+b+c+d
- (d) (a+b)(c+d)
- 9. A collection of vertices and edges is known as a
 - (a) Circuit
- (b) Tree
- (c) Graph
- (d) Cycle
- 10. Which representation of a graph is suitable for dense graphs with many edges?
 - (a) List representation
 - (b) Adjacency matrix representation
 - (c) Incidence matrix representation
 - (d) Edge list representation

Page 3 Code No.: 20675 E

- 3. The composition of two functions is
 - (a) Commutative
- (b) Associative
- (c) Distributive
- (d) None of the above
- 4. When multiplying two functions, f(x) and g(x), the result is
 - (a) f(x) * g(x)
- (b) f(x) + g(x)
- (c) f(x)-g(x)
- (d) f(x)/g(x)
- 5. Which of the following is a binary logical operator?
 - (a) (Negation)
- (b) ∧ (Conjunction)
- (c) v (Disjunction)
- (d) → (Implication)
- Two propositions are said to be logically equivalent if
 - (a) They are identical in terms of syntax
 - (b) They have the same truth values for all possible combinations of truth values of their atomic propositions
 - (c) They have the same atomic propositions
 - (d) They are both tautologies

Page 2 Code No.: 20675 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) If
$$A = \{a, b, c\}$$
 and $M_R = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, find the relation R defined on A .

Or

(b) Find the Composition of the Relations.

$$R_1 = \{(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)\}$$
 and $R_2 = \{(2, x), (4, y), (4, z), (6, z), (8, x)\}$

12. (a) Examine the function $f(x) = x^2$ from the set of integers to the set of integers for one to one.

Or

- (b) Let $A = \{1, 2, 3, 4\}, B = \{a, b, c\}$ and $f = \{(1, a), (2, a), (3, b)\}$. Check whether f is a function or not?
- 13. (a) Find the negation of the following statements:
 - (i) Kolkata is in India
 - (ii) 4+4=9.

Or

(b) Construct truth tables for the propositions.
 ~ (p ∨ q) ∨ (~ p ∧ ~ q)

Page 4 Code No. : 20675 E

14. (a) Show that
$$\begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$
 is orthogonal. Determine the value of $|A|$.

Oı

- (b) Show that the matrix $A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$ satisfies the equation $A^2 4A + I = 0$.
- (a) Prove that, In a graph, total number of odddegree vertices is even.

Or

(b) Show that the degree of a vertex of a simple graph G on n vertices cannot exceed n-1.

PART C
$$-$$
 (5 × 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Let $A = \{1, 2, 3\}$, $B = \{a, b\}$ and $R = \{(1, a), (2, b), (3, a)\}$. Determine M_R in tabular form and in matrix forms.

Or

(b) Explain the classification of relations with example.

Page 5 Code No.: 20675 E

- 17. (a) Let $f: R \to R$ be defined by f(x) = x + 1 and $g: R \to R$ be defined as $g(x) = 2x^2 + 3$. Find $f \circ g$ and $g \circ f$. Is $f \circ g = g \circ f$?

 Or
 - (b) Let $f: R \to R$ be defined by f(x) = 3x 4. Find a formula for f^{-1} . Solution:
- 18. (a) Show that $p \to (q \to r) \Leftrightarrow p \to (\sim q \lor r) \Leftrightarrow (\sim p \land q) \lor r$. Or
 - (b) Write a brief note on disjunctive and conjunctive normal forms.
- 19. (a) Prove that $A^3 4A^2 3A + 11I = 0$ where A is given by $A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{pmatrix}$ And I is the unit matrix of order 3.

Or

- (b) Show that $A = \begin{pmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{pmatrix}$ is involutory.
- 20. (a) Explain the operations on graphs.

 Or
 - (b) Show that maximum number of edges in a simple indirected graph with 'n' vertices is n(n-1)/2.

Page 6 Code No.: 20675 E