Code No.: 20512 E Sub. Code: CACA 21

B.C.A. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

Second Semester

Computer Applications — Allied

MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE

(For those who joined in July 2021-2022)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. A set consisting of just one element is called a
 - (a) Singular Set
- (b) Closed Set
- (c) Singleton Set
- (d) Open Set
- 2. (A-B)-C = -
 - (a) (A-C)-(B-C)
- (b) (A-B)-(A-C)
- (c) (B-A)-(B-C)
- (d) (A B) (B C)

- 8. A graph with vertices but no edges is called
 - (a) Simple graph
- (b) Trivial graph
- (c) Null graph
- (d) Euler graph
- 9. A ——— of a graph G is an edge whose removal disconnects the graph.
 - (a) Bridge
- (b) Cut edge
- (c) Link
- (d) Cut vertex
- A tree is a rooted tree in which every vertex has atmost two children.
 - (a) Spanning
- (b) b-tree
- (c) General
- (d) Binary

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) In an examination, 75% of students passed in Physics and 85% in Chemistry, 70% in both. What percentage of the students failed in both?

Or

(b) Show that the relation $\rho = \{(a, b): 2 \text{ divides } (a-b)\}$ is an equivalence relation

Page 3 Code No. : 20512 E

- 3. If $f: X \to Y$, $g: Y \to Z$ be two functions, then if $g \circ f$ is l-1 then f is ----.
 - (a) Either 1-1 or onto (b) Neither 1-1 nor onto
 - (c) Onto
- (d) 1-1
- 4. The function $F: X \to X$ such that $F = \{(x, x), x \in X\}$ is called _____ function on X.
 - (a) Singular
- (b) Identity
- (c) Singleton
- (d) Unique
- 5. The conjunction of two statements P and Q is true when ————.
 - (a) Either P or Q is true
 - (b) Both P and Q are true
 - (c) Only when P is true
 - (d) Only when Q is true
- - (a) $P \rightarrow Q$
- (b) $Q \rightleftharpoons P$
- (c) $P \Rightarrow Q$
- (d) $Q \rightarrow P$
- 7. A graph that has neither self-loops nor parallel edges is called ———.
 - (a) Simple graph
- (b) Trivial graph
- (c) Null graph
- (d) Euler graph

Page 2 Code No.: 20512 E

12. (a) If $f: X \to Y$, $g: Y \to Z$ and $h: Z \to S$ are functions, then show that $h \circ (g \circ f) = (h \circ g) \circ f$.

Or

- (b) Prove that the function $f: R \to R$ given by f(x) = 2x is one-one and onto.
- 13. (a) Construct the truth table for $Q \wedge (P \to Q) \to P \ .$

Or

- (b) Show that $(P \wedge Q) \vee P \Leftrightarrow Q \vee P$.
- 14. (a) Prove that the sum of degrees of the vertices of a graph G is twice the number of edges.

Or

- (b) Write a note on bipartite graph.
- 15. (a) Write a note on Euler graph.

Or

(b) Mention the properties of trees.

Page 4 Code No.: 20512 E

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) For any finite sets A and B, using principle of inclusion-exclusion, show that $|A \cup B| = |A| + |B| - |A \cap B|$.

Or

- (b) Prove that the equivalence of any two equivalence relation is an equivalence relation.
- 17. (a) Show that $f: R \to R$ defined by f(x) = 7x 1 is a bijection and find its inverse. Compute $f^{-1} \circ f = f \circ f^{-1}$.

Or

- (b) Explain the types of functions.
- 18. (a) Construct the truth table to show that $(P \land (P \rightarrow Q)) \rightarrow Q$ is a tautology.

Or

(b) Obtain the principle disjunctive normal form for $(P \wedge Q) \vee (P \wedge Q \wedge R)$.

Page 5 Code No.: 20512 E

19. (a) Prove that the number of vertices of odd degree in a graph G is always even.

Or

- (b) Explain the operations on graph.
- 20. (a) Prove that in a graph G, every walk contains a path.

Or

(b) Show that the number of pendant vertices in a binary tree is (n+1)/2.

Page 6 Code No.: 20512 E