(7	pages)
----	--------

Code No.: 5418

M.Sc	. (CB	CS) DEGREE EXA	MIN	TITOM	,
	(()	Third Ser			
		Chemistry	- Co	re	
		ORGANIC SPECTI REARRANG	ROSC	COPYA	ND
	(For	those who joined in			onwards)
					num : 75 marks
ime	inn	ree hours	1 - 1		
		PART A — (10 ×			(8)
		Answer ALL		tions.	
		ose the correct answ			
1.	A ca	erbonyl group will c	cause		rp dip at about
	(a)	1700	(b)	2800	
	(c)	3400	(d)	1200	
2,	The	finger print reg	ion i	in IR	spectroscopy is
	(a)	4000 to 1000 cm ⁻¹			to 400 cm ⁻¹
	, ,	200 to 1400 cm ⁻¹	(d)	2999	to 1200 cm ⁻¹
7.	INA	DEQUATE is a recogning	netho	od ofte	n used to find
7.	_	coupling	s bet	ween a	n used to find djacent atoms.
7.	(a)	13C coupling	s bet (b)	veen a	n used to find djacent atoms.
	(a) (c)	9F coupling	s bet (b) (d)	ween a 12C 14N	djacent atoms.
	(a) (c) The	13C coupling	s bet (b) (d)	ween a 12C 14N	djacent atoms.
	(a) (c) The	coupling 9F first two-dimensio	s bet (b) (d)	ween a 12C 14N	djacent atoms.
	(a) (c) The proj	e first two-dimensio	s bet (b) (d)	ween a 12C 14N	djacent atoms.
	(a) (c) The proj (a) (b)	e first two-dimensio posed by Jean Jeener	s bet (b) (d)	ween a 12C 14N	djacent atoms.
7. 8.	(a) (c) The proj (a) (b) (c)	e first two-dimensio posed by Jean Jeener Madam Curie	s bet (b) (d) nal e	ween a 12C 14N xperim	djacent atoms.
8.	(a) (c) The proj (a) (b) (c) (d)	risc coupling First two-dimension posed by Jean Jeener Madam Curie Newton Christy Catherene benzilic acid rea	s bet (b) (d) nal e	ween n 12C 14N xperim	djacent atoms. ent, COSY was
8.	(a) (c) The prop (a) (b) (c) (d) The cycl	ger coupling ger first two-dimension posed by Jean Jeener Madam Curie Newton Christy Catherene benzilic acid rea ic diketone leads to	s bet (b) (d) nal e	ween n 12C 14N xperim	djacent atoms. ent, COSY was
8.	(a) (c) The project (a) (b) (c) (d) The cycl (a)	grandener coupling 13C 9F 16 first two-dimension 17 posed by Jean Jeener Madam Curie Newton Christy Catherene benzilic acid real ic diketone leads to Ring expansion	s bet (b) (d) nal e	ween n 12C 14N xperim	djacent atoms. ent, COSY was
8.	(a) (c) The project (a) (b) (c) (d) The cycl (a)	risc coupling First two-dimension posed by Jean Jeener Madam Curie Newton Christy Catherene benzilic acid real ic diketone leads to Ring expansion Ring contraction	s bet (b) (d) nal e	ween n 12C 14N xperim	djacent atoms. ent, COSY was
	(a) (c) The projection (b) (d) The cycle (a) (b) (c)	grandener coupling 13C 9F 16 first two-dimension 17 posed by Jean Jeener Madam Curie Newton Christy Catherene benzilic acid real ic diketone leads to Ring expansion	s bet (b) (d) nal e	ween n 12C 14N xperim	djacent atoms. ent, COSY was
8.	(a) (c) The prop (a) (b) (c) (d) The cycl (a) (b) (c) (d) Car	risc coupling First two-dimension posed by Jean Jeener Madam Curie Newton Christy Catherene benzilic acid real ic diketone leads to Ring expansion Ring contraction Ring fusion Isomers bon to oxygen migration	s bet (b) (d) nal e Mary	ween n 12C 14N xperim	dincent atoms.
9.	(a) (c) The prop (a) (b) (c) (d) The cycl (a) (b) (c) (d) Carrea	risc coupling First two-dimension posed by Jean Jeener Madam Curie Newton Christy Catherene benzilic acid real ic diketone leads to Ring expansion Ring contraction Ring fusion Isomers bon to oxygen migrary	s bet (b) (d) nal e Mary rrang	is seen	ent, COSY was
9.	(a) (c) The prop (a) (b) (c) (d) The cycl (a) (b) (c) (d) Car rea: (a)	risc coupling First two-dimension posed by Jean Jeener Madam Curie Newton Christy Catherene benzilic acid real ic diketone leads to Ring expansion Ring contraction Ring fusion Isomers bon to oxygen migration	s bet (b) (d) nal e Mary rrang (b)	is seer Dakir	ent, COSY was

Reg. No.:

Sub. Code: ZCHM 31

- 3. A proton Hb is coupled to four equivalent protons Ha. The multiplicity and the relative intensity of lines in the signal Hb is?
 - (a) Doublet, 1:4
 - (b) Triplet, 1:4:6
 - (c) Quintet, 1:4:6:4:1
 - (d) Quartet, 1:4:6:4
- H₂, CH₄, C₂H₆ and C₆H₆ exhibit which PMR spectra?
 - (a) Singlet
- (b) Doublet
- (c) Triplet
- (d) Quintet
- 5. Which species of the following is used to bombard the sample in mass spectroscopy?
 - (a) Alpha particles
 - (b) Neutrons
 - (c) Electrons
 - (d) Protons
- 6. Separation of ions in mass spectrometer take place on the basis of which of the following?
 - (a) Mass
- (b) Charge
- (c) Molecular weight
- (d) Mass to charge ratio

Page 2 Code No. : 5418

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) State and explain Beer-Lambert's law.

Or

- (b) Explain axial haloketone rule and how it is used determination of conformation.
- 12. (a) Compare CW and FT NMR spectra.

 \mathbf{Or}

- (b) Explain vander Waals deshielding in NMR spectroscopy.
- 13. (a) (i) Explain Base peak in mass spectrometry.
 - (ii) State and explain nitrogen rule in mass spectrometry.

Or

- (b) Write a short note on Chemical ionisation technique in mass spectroscopy.
- 14. (a) Explain 1H-1H COSY with one example.

Or

(b) What is inadequate spectrum? Explain.

Page 4 Code No.: 5418 [P.T.O.]

Page 3 Code No.: 5418

 (a) Explain Migratory aptitude in molecular rearrangements.

Or

(b) What is Benzil- Benzilic acid rearrangement? Explain its mechanism.

PART C - $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b)

16. (a) Explain how maximum absorption values are affected in uv-visible absorption spectroscopy with special reference to solvent effect and hydrogen bonding.

Or

- (b) State and explain how Woodward-Fieser Rules are used to calculate maximum absorption values of conjugated dienes in uv-visible absorption spectroscopy.
- (a) Explain spin-spin coupling in NIMR spectroscopy.

Or

(b) Explain chemical exchange in NMR spectroscopy.

Page 5 Code No. : 5418

- In infra-red, the bands are formed at
 (1) 2941-2857 (m), (2) 1742 (s), (3) 1460 (m),
 (4) 1056 (s) and (5) 1260 cm⁻¹ (s). In the NMR spectrum, three signals are observed.
- (ii) (1) Singlet 7.5 τ (5.3 squares), (2) triplet 8.71 τ (16.5 squares, J = 7.2 cps) and (3) quartet 5.84 τ (10.8 squares, J = 7.2 cps). Determine the structure of the compound.
- 20. (a) What is Brook rearrangement? Explain mechanism and imigratory aptitude

Or

(b) Explain memory effect in molecular rearrangement with one example.

- (a) State Mc Lafforty rearrangement. Explain the mechanism of this rearrangement in
 - (i) Pentanal
 - (ii) Pentan 2 One
 - (iii) Ethylacitate

Or

- (b) Outline Fragmentation pattern of alcohola, aldehydea, ketones and othics in MS
- (a) A compound molecular mass 164 absorbs at 220 nm ε_{max} 1880. In infra red spectrum, absorption bands are formed at 3077 cm⁻¹(w), 1745 cm⁻¹ (s) 1608 cm⁻¹ (m), 1497 cm⁻¹ (m) and 1456 cm⁻¹ (m).

In NMR, the signals formed are (i) 2.7 ϵ singlet (16.5 squares). (ii) 5.70 ϵ triplet (d = 7.3 cps, 6.2 squares), (iii) 7.07 triplet (d = 7.3 cps, 6.7 squares) and (iv) 7.98 ϵ singlet (10.2 squares). Determine the structure of the compound.

Or

(b) An organic compound with molecular formula C₇H₁₂O₄ molecular mass 160 absorbs at 212 nm ε_{max} 60 in the ultraviolet spectrum.

Page 6 Code No. : 5418