(8 page				(a)	Metric	(b) Hilbert	
Code	No.: 7385	Sub. Code : ZMAM 43		(c)	Empty	(d) Banach	
	M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.			3. The — of the linear transformation T is the subset $B \times B'$ consists of all ordered pairs of			
	Fourth Semester		the form $(x, T(x))$				
	Mathema	atics — Core		(a)	open	(b) graph of T	
	FUNCTIONAL ANALYSIS			(c)	open map	(d) closed map	
	(For those who joined in July 2021–2022)			4. The isometric isomorphism $x \to F_x$ is called the			
Time:	Three hours	Maximum: 75 marks			of N		
	PART A — (1	$0 \times 1 = 10 \text{ marks}$	2 70	(a)	bijective		
	Answer ALL questions.		12.00	(b)	injective	injective	
	Choose the correct answer:			(c) natural imbedding			
7	closed unit sphere	nuous function T satisfying for any sphere in N its image T (S) is a N the norm is defined as		(d)	N into N^{**}		
	(a) $\sup \{ \ T(x) \ : \ x \ \le 1 \}$			5. A complete Banach space whose norm arises from an inner product is said to be ———————————————————————————————————			
3	(b) $\sup \{ \ T(x) \ : \ $	$x \parallel = 1$	tobe.				
	(c) $\inf \{ \ T(x) \ : \ $		V.	(a)	Banach	(b) Complete	
				(c)	Hilbert	(d) Hausdorff	
	(d) $\inf \{ \ T(x) \ : \ $	$x \parallel \leq 1$: "		Page 2 Code No.: 7385	
6.	Two vectors x and	y in a Hilbert space H are said			PART B -	$-(5 \times 5 = 25 \text{ marks})$	
. 0.	to be —	$\inf \langle x, y \rangle = 0.$		Ansv	- A - A - A - A - A - A - A - A - A - A	ons, choosing either (a) or (b).	
	(a) parallel	(b) orthogonal		E	ach answer should not exceed 250 words.		
, <u>*</u>	(c) equal	(d) unequal	11.	* 1		osed linear subspace of a normal	
7.	A non empty subs	et of a Hilbert space H which	0_	(a)	linear space	N and x_0 is a vector not in M ,	
	consists of mutually orthogonal unit vectors is		1			that there exists a functional f_0 in	
	called as	— set.		ni .	N* such th	at $f_0(M) = 0$ and $f_0(x_0) \neq 0$.	
	(a) ortho-normal	7.7%		F		Or	
	(c) whole set	(d) power set		(b)	If N and N	" are normed linear spaces then the set $B(N, N')$ of all continuous	
8.	The conjugate op $(T * f) x = $	erator T^* of T is given by		an y	linear trans	formations of N into N' is itself inear space with respect to the	
AT .	(a) $T * f(x)$	(b) $fT * (x)$			pointwise]	inear operations and the norm $\ = \sup \{ \ T(x) \ : \ x \ \le 1 \}$	
	(c) $f(Tx)$	(d) $T * (f(x))$					
9.	An operator N on commutes with its	H is said to be ———————————————————————————————————	12	. (a)	the closed 1	if N is a normal linear space then unit sphere S^* in N^* is a compact space in the weak * topology,	
, '	(a) normal	(b) unitary				Or	
	(c) singular	(d) orthogonal		(b	State and r	prove closed graph theorem.	
10.	An operator A of $A = A^*$ is called –	on H satisfying the condition	13) Prove that	if x and y are any two vectors in a ce then $ (x, y) \le x y $.	
10	(a) adjoint	(b) self adjoint			TIMBEL SP		
	(c) unitary	(d) inverse	Water Company			Or	
		Page 3 Code No.: 7385				Page 4 Code No.: 7385	

Reg. No.:

A complete normed linear space is called as

[P.T.O.]

- (b) If M and N are closed linear subspaces of a Hilbert space H such that $M \perp N$ then prove that the linear subspace M + N is also closed.
- 14. (a) Let $\{e_1, e_2 \cdots e_n\}$ be a finite orthonormal set in a Hilbert space H. If x is any vector in H, then prove that

$$\sum_{i} |(x, e_i)|^2 \le ||x||^2; \quad x - \sum_{i} (x, e_i) e_i \perp e_j \quad \text{for} \quad$$
each j

Or

- (b) Let H be a Hilbert space and let $\{e_i\}$ be an orthonormal set in H. Prove that the following conditions are all equivalent to one another.
 - (i) $\{e_i\}$ is complete
 - (ii) $x \perp \{e_i\} \Rightarrow x = 0$
 - (iii) if x is an arbitrary vector in H, then $x = \sum (x, e_i) e_i$
 - (iv) if x is an arbitrary vector in H, then $\|x\|^2 = \sum |(x, e_i)|^2$

Page 5 Code No.: 7385

- (b) Prove that if B is a Banach space, then B is reflexive $\Leftrightarrow B^*$ is reflexive. If N is finite dimensional normed linear space of dimension n show that N^* also has dimension N. Prove that N is reflexive.
- 18. (a) State and prove uniform boundedness theorem.

Or

- (b) If M is a proper closed linear subspace of a Hilbert space H, then prove that there exists a non zero vector Z_0 in H such that $Z_0 \perp M$.
- 19. (a) Prove that the adjoint operation $T \to T^*$ on $\mathcal{O}(H)$ has the following properties.
 - (i) $(T_1 + T_2)^{\bullet} = T_1^{\bullet} + T_2^{\bullet}$
 - (ii) $(\alpha T)^* = \overline{\alpha} T^*$
 - (iii) $(T_1T_2)^* = T_2^*T_1^*$
 - (iv) $||T * T|| = ||T||^2$

Or

(b) If $\{e_i\}$ is an orthonormal set in a Hilbert space H and if x is an arbitrary vector in H, then prove that $x - \sum (x, e_i) e_i \perp e_j$ for each j.

15. (a) If P and Q are the projections on closed linear subspaces M and N of H, then prove that $M \perp N \Leftrightarrow PQ = 0 \Leftrightarrow QP = 0$.

Or

(b) Prove that if T is an operator on H, then T is normal ⇔ its real and imaginary parts commute.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) State and prove Hahn-Banach theorem.

Or

- (b) Let M be a closed linear subspace of a normed linear space N. If the norm of a coset x+M in the quotient space N/M is defined by $||x+M|| = \inf\{||x+m|| : m \in M\}$ then prove that N/M is a normed linear space. Also prove that if N is a Banach space that N/M is also so.
- 17. (a) State and prove open mapping theorem.

Or

Page 6 Code No.: 7385

20. (a) Prove that if $P_1, P_2 \cdots P_n$ are the projections on closed linear subspaces $M_1, M_2, \cdots M_n$ of H then $P = P_1 + P_2 \cdots + P_n$ is a projection \Leftrightarrow the P_i S are pairwise orthogonal and P is a projection on $M = M_1 + M_2 + \cdots + M_n$.

Or

(b) If N_1 and N_2 are normal operators on H with either commute with the adjoint of the other then prove that $N_1 + N_2$ and $N_1 N_2$ are normal.