(6	pag	(es)

Reg. No.:

Code No.: 7384

Sub. Code: ZMAM 42

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

Fourth Semester

Mathematics - Core

COMPLEX ANALYSIS

(For those who joined in July 2021-2022 onwards)

Time: Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. A function which satisfies Laplace's equation $\Delta u = 0$ is said to be ————
 - (a) harmonic
- (b) Conjugate
- (c) compact
- (d) morera
- 2. A series of the form $a_0 + a_1x + a_2x^2 + ...$ is called ______ series.
 - (a) Sequence
- (b) Laurent
- (c) Power
- (d) Exponential

- 7. If γ lies inside of a circle, then $n(\gamma, \alpha) =$ ———————— for all points a outside of the same circle.
 - (a) 1
- (b) 0
- (c) -1
- (d) 2
- 8. A function which is analytic and bounded in the whole plane must reduce to a ————
 - (a) 0
- (b) -1
- (c) constant
- (d) Complex number
- 9. The ——— of f(z) at an insolated singularity a is the unique number R such that f(z)-R/(z-a) the derivative of a single valued analytic function in an annulus $0 < |z-a| < \delta$.
 - (a) Pole
- (b) Zero
- (c) Order
- (d) Residue
- 10. A cycle γ is said to the region Ω if and only if $n(r, \alpha)$ is equal to 1 for all $\alpha \in \Omega$ and either undefined or zero for $\alpha \notin \Omega$.
 - (a) Closed
- (b) Open
- (c) Bound
- (d) Compact

Page 3 Code No.: 7384

- 3. The points z and z^* are said to be with respect to the circle c through z_1, z_2, z_3 if and only if $(z^*z_1z_2z_3) = (\overline{z} \ \overline{z}_1 z_2 \ \overline{z}_3)$
 - (a) transitive
- (b) symmetric
- (c) refluxive
- (d) equal
- 4. The cross ratio is ————— under linear transformation.
 - (a) Constant
- (b) Same
- (c) Equal
- (d) Invariant
- 5. The integral $\int_{\gamma} f dz$ with continuous f depends only the end points of γ if and only if f is the _____ of an analytic function in
 - (a) Derivative
- (b) Integrand
- (c) Zero
- (d) Discontinuous
- 6. The length of a circle with equation $z = z(t) = \alpha + \rho c^{it}, 0 \le t \le 2\pi$ is
 - (a) 2π
- (b) $2\pi i$
- (c) $2\pi \rho$
- (d) $\pi \rho$

Page 2 Code No.: 7384

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Derive Taylor-Maclaurin series from power series.

O

- (b) Expand $\frac{2z+3}{z+1}$ in powers of z-1.
- 12. (a) If z_1, z_2, z_3, z_4 are distinct points in the extended plane and T any linear transformation, then prove that $(Tz_1, Tz_2, Tz_3, Tz_4) = (z_1 z_2 z_3 z_4)$.

Oı

- (b) Find the linear transformation which carries the circle |z|=2 into |z+1|=1, the point -2 into the origin and the origin into i.
- 13. (a) Prove that $\left| \int_{r} f \, dz \right| \le \int_{r} |f| \cdot |dz|$.

(b) If f(z) is analytic in an open disk Δ , then prove that $\int_{r} f(z)dz = 0$ for every closed curve γ in Δ .

Page 4 Code No.: 7384

14. (a) Define zeros and poles with examples.

Or

- (b) If the piecewise differentiable closed curve γ does not pass through the point a then prove that $\int_{\gamma} \frac{dz}{z-a}$ is a multiple of $2\pi i$.
- 15. (a) State and prove argument principle.

Or

(b) Find the residue of the function $\frac{e^z}{(z-a)(z-b)}.$

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

16. (a) Prove that if all zeros of a polynomial P(z) lie in a half plane, then all zeros of the derivative P'(z) lie in the same half plane.

Or

(b) Derive Cauchy-Riemann equations.

Page 5 Code No.: 7384

17. (a) Prove that the cross ratio $(z_1 z_2 z_3 z_4)$ is real if and only if the four points lie on a circle or on a straight line.

Or

- (b) Prove the symmetric principle.
- 18. (a) State and prove Cauchy's theorem for a rectangle.

Or

- (b) Prove that the line integral $\int p \, dx + q \, dy$ defined in Ω depends only on the end points of γ if and only if there exists a function U(x,y) in Ω with the partial derivatives $\frac{\partial u}{\partial x} = p, \frac{\partial u}{\partial y} = q$.
- 19. (a) State and prove Taylor's theorem.

Or

- (b) Derive Cauchy's integral formula.
- 20. (a) Compute $\int_{0}^{\pi} \frac{d\theta}{a + \cos \theta}$, a > 1 write about definite integral.

Or

(b) State and prove Cauchy residue theorem.

Page 6 Code No.: 7384