.71	7		Come V	
1	ın	1) 17	es)	
		51.64	46 67.1	

	A SALE	170	40 10 10 10
Reg. N	0. :	Virte-Hamilton	.animoneum

Code No.: 7380

Sub. Code: ZMAM 34

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

Third Semester

Mathematics - Core

TOPOLOGY - I

(For those who joined in July 2021-2022 onwards)

Time: Three hours

Maximum: 75 marks

PART A - (10 × 1 = 10 marks)

Answer ALL questions.

Choose the correct answer:

- If x is any set the collection of all subset of x is a topology it is called
 - (a) Discrete topology (b) Non discrete
- - (c) Trivial
- (d) Comparable
- If Y is a sub space of X then a set U is in Y.
 - (a) Closed
- (b) Subset
- (c) Open
- (d) None
- (a) Connected

map is

- (b) Compact
- (c) Non compact
- (d) None

The image of a compact space under a continuous

- If very infinite subset of X has a limit then x is called
 - (a) Limit point compact (b) Limit point
 - (c) Compact
- (d) Continuous
- Let X be metrizable then x is
 - (a) Countable
- (b) Continuous
- (c) Limit point
- (d) None of the above

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Let Y be a subspace of X. Then prove that a set A is closed in Y if and only if it equals the intersection of a closed set X with Y.

Or

(b) The topologies of \mathbb{R} , and \mathbb{R}_K are strictly finer than the standard topology on R but are no comparable with one another - Prove.

Page 3

Code No.: 7380

- Let $f: X \to Y$ be a bijection. If both f and the 3 inverense function are continuous then f is called
 - (a) Imbedding
- (b) Topological space
- (c) Continuous
- (d) Homeomorphism
- If A is a subspace of X, the inclusion function $j: A \to Y$ is continuous is -
 - (a) composites
- (b) constant
- (c) inclusion
- (d) none
- The metric \overline{d} is called - of d.
 - (a) Metric space
- (b) Bounded space
- (c) Standard bounded
- (d) None
- An uncountable product of R with itself is
 - (b) Not metrizable
 - (a) Metrizable (c) Topology

6.

- (d) Isometric
- The image of a connected space under a connected
 - (a) Connected

map is -

- (b) Compact
- (c) Non compact
- (d) Non connected

Page 2

Code No.: 7380

12. (a) State and prove pasting lemma.

- (b) If \mathcal{B} is a basis for the topology of X and \mathcal{C} is a basis for the topology of Y the collection $\mathcal{D} = \{B \times C \mid B \in \mathcal{B} \text{ and } C \in \mathcal{C}\}$ is basic topology of $X \times Y$ - prove.
- (a) Let d and d be two metrics on the set X; let 13. τ and τ' be the topologies they reduce respectively. Then prove that τ' is finer than τ if and only if for each x in X and each $\varepsilon > 0$ there exist $\delta > 0$ $B_{d'}(x, \delta) \subset B_{d}(x, \epsilon)$.

Or

- (b) Let $f: X \to Y$; let X and Y be metrizable with metrics d_X and d_Y respectively. Then continuity of f is equivalent to the requirement that given $x \in X$ and given $\epsilon > 0$ exist $\delta > 0$ such that there $d_X(x,y) \Rightarrow d_Y(f(x),f(y)) < \varepsilon$ - prove.
- (a) Prove that every closed subspace of a compact 14. space is compact.

Or

(b) Let $f: X \to Y$ be a bijective continuous function. If X is compact and Y is hausdorff then prove that f homeomorphism.

Page 4

Code No.: 7380

[P.T.O]

15. (a) Let X be locally compact Hausdroff space. Let A be a subspace of X. If A is closed in X or open in X then prove that A is locally compact.

O

(b) Compactness implies limit point compactness but not conversely – Prove.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Let Y be a subspace of X. Then prove that a set A is closed in Y if and only if it equals the intersection of a closed set of X and Y.

Or

- (b) Let X be a topological space. Suppose that $\mathcal C$ is a collection of open sets in X such that for each open set U of X and each x in U there is a element C of C such that $x \in C \subset U$. Then prove that C is a basis for the topology of X.
- 17. (a) Let $f:A\to\prod_{\alpha\in J}X_\alpha$ is given by the equation $f(\alpha)=(f_\alpha(\alpha))_{\alpha\in J}$. Where $f_\alpha:\prod X_\alpha$ for each α . Let $\prod X_\alpha$ have the product topology. Then prove that the function f is continuous if and only if each function f_α is continuous.

Or

Page 5 Code No.: 7380

- 20. (a) Let X be a metrizable space. Then prove that the following are equivalent
 - (i) X is compact
 - (ii) X is limit point compact
 - (iii) X is sequentially compact.

Or

(b) Prove that a space X is locally compact Hausdorff space if and only if it has a unique one point compactification.

- (b) Let X and Y are topological spaces. Let f: X → Y. Then prove that the following are equivalent.
 - (i) f is continuous
 - (ii) for every subset A of X one has $f(\overline{A}) \subset \overline{f(A)}$
 - (iii) for every closed set B of Y the set f⁻¹(B) is closed in X
 - (iv) for each $x \in X$ and each neighborhood V of f(x) there is a neighborhood U of x such that $f(U) \subset V$. If the condition in (d) holds for the point x of X we say that f is continuous at the point x.
- 18. (a) The topologies of R^n induced by the Euclidean metric d and the aquare metric ρ are same as the product topology on R^n Prove

Or

- (b) State and prove uniform limit theorem.
- 19. (a) Prove that the product of finitely many compact space is compact.

Or

(b) Every compact subspace of Hausdorff space is closed – Prove.

Page 6 Code No.: 7380