Code No.: 7379

Sub. Code: ZMAM 33

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

Third Semester

Mathematics - Core

MEASURE AND INTEGRATION

(For those who joined in July 2021 - 2022)

Time: Three hours

Maximum: 75 marks

PART A - (10 × 1 = 10 marks)

Answer ALL questions.

Choose the correct answer:

1. The outer measure of A, $m^{\alpha}(A)$ is defined by

(a)
$$\inf \left\{ \sum_{k=1}^{\infty} l(I_k) \middle/ \bigcup_{k=1}^{\infty} I_k \subseteq A \right\}$$

(b)
$$\sup \left\{ \sum_{k=1}^{\infty} l(I_k) \middle/ A \subseteq \bigcup_{k=1}^{\infty} I_k \right\}$$

(c)
$$\inf \left\{ \sum_{k=1}^{\infty} l(I_k) \middle/ A \subseteq \bigcup_{k=1}^{\infty} I_k \right\}$$

(d)
$$\inf \left\{ l(I_k) \middle/ A \subseteq \bigcup_{k=1}^{\infty} I_k \right\}$$

- 5. The Dirichlet's function f is
 - (a) Both Riemann integrable and integrable over [0,1]
 - (b) Riemann integrable but not integrable over [0,1]
 - (c) Integrable but not Riemann integrable over [0,1]
 - (d) Neither Riemann integrable nor integrable over [0,1]
- 6. Let E = [0, 1]. Define $f_n = n \cdot \chi(0, \frac{1}{n})$. Then $\lim_{n \to \infty} \int_E f_n$.

is

- (a) 0
- (b) 1
- (c) ∞
- (d) 1
- 7. [-5] is
 - (a) $5f^+$
- (b) -5f
- (a) $-5f^+$
- (d) 5f

Page 3 Code No.: 7379

- 2. Which one of the following is not true?
 - (a) Outer measure is defined for all sets of real number
 - (b) the outer measure of an interval is its length
 - (c) outer measure is translation invariant
 - (d) outer measure is countably additive
- 3. $\{x \in E \mid f(x) > c\}$ is the same as

(a)
$$\bigcap_{k=1}^{\infty} \left\{ x \in E \middle/ f(x) > c - \frac{1}{k} \right\}$$

(b)
$$\bigcup_{k=1}^{\infty} \left\{ x \in E \middle/ f(x) \ge c + \frac{1}{k} \right\}$$

(c)
$$\bigcap_{k=1}^{\infty} \left\{ x \in E/f(x) > k \right\}$$

(d)
$$\bigcap_{k=1}^{\infty} \left\{ x \in E \middle/ f(x) \ge c + \frac{1}{k} \right\}$$

4. For any C, we have $\{x \in E \mid \max\{f_1, f_2, \dots, f_n\}(x) > c\}$ is

(a)
$$\bigcup_{k=1}^{n} \left\{ x \in E / f_k(x) > c \right\}$$

(b)
$$\bigcap_{k=1}^{n} \{x \in E/f_k(x) > c\}$$

(c)
$$\bigcup_{k=1}^{n} \{x \in E / (f_1 + f_2 + . + f_k)(x) > c \}$$

- (d) $\{x \in E/f_k(x) > c\}$ for some k
 - Page 2 Code No.: 7379
- 8. Define f on [0,1] by $f(x) = \begin{cases} x \cos(\pi/2x) & \text{if } 0 < x \le 1 \\ 0 & \text{if } x = 0 \end{cases}$ Take

$$P_n = \left\{0, \frac{1}{2n}, \frac{1}{2n-1}, \dots, \frac{1}{3}, \frac{1}{2}, 1\right\}.$$
 Then $V(f, P_n)$ is

- (a) 0 (b) $1 + \frac{1}{2} + \frac{1}{3} + . + \frac{1}{2n}$
- (c) $1 + \frac{1}{2} + \dots + \frac{1}{n}$ (d) 1
- 9. A decomposition of X into the union of two disjoint sets A and B for which A is positive for γ and B negative is called a ______ for γ .
 - (a) Jordan decomposition
 - (b) Hahn decomposition
 - (c) Lebesgue decomposition
 - (d) Royden decomposition
- 10. The measure $|\gamma|$ is defined on γ by $|\gamma|(E) =$
 - (a) $\gamma^+(E) \gamma^-/E$
- (b) $\gamma^{-}(E) + \gamma^{+}(E)$
- $(\alpha) \quad \mathcal{M} = X'$
- (d) $\gamma^+(E)-\gamma^-(E)$
- Page 4

Code No.: 7379

PART B - (5 × 5 = 25 marks)

Answer Ald, questions, choosing either (a) or (b).

11. (a) Define the outer measure m* and prove that a countable set has outer measure zero.

Or

- (b) Show that the union of two measurable sets is measurable.
- 12. (a) Let the function f be defined on a measurable set E. Prove that f is measurable if and only if fn each open set 0, f⁻¹(0) is measurable.

Or

- (b) Let f be a measurable real-valued function on E. Assume f is founded on E. Prove that for each $\varepsilon > 0$, there are simple functions ϕ_{ε} and Ψ_{ε} defined on E which have the following approximation properties $\phi_{\varepsilon} \leq f \leq \Psi_{\varepsilon}$ and $0 \leq \Psi_{\varepsilon} \phi_{\varepsilon} < \varepsilon$ on E.
- 13. (a) Let f be a founded measurable function on a set of finite measure E. Prove that f is integrable over E.

Or

Page 5 Code No.: 7379

PART C - (5 × 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

16. (a) Show that every interval is measurable.

Or

- (b) Prove that Lebesgue measure possesses the following continuity properties
 - (i) If $\{A_k\}$ is an ascending collection of measurable sets then $m\left(\bigcup_{k=+\infty}^{\infty} A_k\right) = \lim_{k\to\infty} m(A_k).$
 - (ii) If $\{B_k\}$ is a descending collection of measurable sets and $m(B_1) < \infty$, then $m\left(\bigcap_{k=1}^{\infty} B_k\right) = \lim_{k \to \infty} m(B_k).$
- 17. (a) Let f and g be measurable functions on E that are finite a.e on E. Prove that
 - (i) $\alpha f + \beta g$ is measurable on E for any α and β .
 - (ii) fg is measurable on E.

Or

(b) State and prove Egoroff's theorem.

Page 7 Code No.: 7379

- (b) Let f be a nonnegative measurable function on E. Prove that f = 0 if and only if f = 0 a.e. on E.
- 14. (a) Let f be integrable over E. Assume A and B are disjoint measurable subsets of E.

 Prove that $\int_{A}^{A} f = \int_{A}^{A} f + \int_{B}^{A} f$.

Or

- (b) Let f be an increasing function on the closed, bounded interval [a,b]. Prove that f' is integrable over [a,b] and $\int f^1 \le f(b) \le f(a)$.
- 15. (a) Prove that a function on [a,b] is absolutely continuous on [a,b] if and only if it is an indefinite integral over [a,b].

Or

(b) Define a positive set. Let γ be a singed measure on the measurable space (X, M). Prove that every measurable subset of a positive set is itself positive and the union of a countable collection of positive sets is positive.

Page 6 Code No.: 7379

18. (a) State and prove the bounded covergence theorem.

Or

- (b) State and prove Fatou's lemma.
- 19. (a) State and prove the Lebesgue dominated convergence theorem.

Or

(b) Let f be an increasing function on [a,b] for each $\alpha > 0$, prove that

$$m^*\left\{x\in(a,b)/\overline{D}f(x)\geq\alpha\right\}\leq \frac{1}{\alpha}[f(b)-f(a)].$$

20. (a) Let the function f be continuous on [a,b]. If the family of divided difference functions $\{Diff_h f\}_{0 < h \le 1}$ is uniformly integrable over [a,b], Prove that f is absolutely continuous on [a,b].

Or

(b) State and prove the Hahn decomposition theorem.