Code No.: 7377

Sub. Code: ZMAM 31

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023

Third Semester

Mathematics - Core

ADVANCED ALGEBRA - I

(For those who joined in July 2021-2022)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. Let U,W be subspaces of V such that $U \subset W$. Let A(U) be the annihilator of \underline{U} . Then
 - (a) $A(U) \supset A(W)$
 - (b) $A(U) \subset A(W)$
 - (c) A(U) and A(W) are not comparable
 - (d) A(U) = A(W)

- 2. If $\dim V = 5$, $\dim W = 6$ then $\dim Hom(V, F) + \dim Hom(W, F)$ is
 - (a) 60
- (b) 30
- (c) 61
- (d) 11
- 3. The number of operations is an algebra is
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- 4. Let V be two-dimensional over the filed F or real number with a basis v_1, v_2 . If T is defined by $v_1T = v_1 + v_2, v_2T = v_1 v_2$, which one of the following is a characteristic root of T
 - (a) $\sqrt{2}$
- (b) 3
- (c) 2
- (d) 1
- 5. If M, of dimension 16, is cyclic w.r.t. T, then the dimension of MT^4 is
 - (a) 64
- (b) 4
- (c) 12
- (d) 20

Page 2 Code No.: 7377

- 6. Which of the following is a Jordan block
 - (a) $\begin{cases} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{cases}$
- (b) $\begin{pmatrix} 3 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{pmatrix}$
- (c) $\begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$
- (d) $\begin{pmatrix} 3 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 3 \end{pmatrix}$
- 7. The companion matrix of $-5 + 6x + 7x^2 + x^3 + x^4$ is

Page 3

- (b) $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 5 & -6 & -7 & 1 \end{pmatrix}$
- (c) $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -5 & 6 & 7 & 1 \end{pmatrix}$
- (d) $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -5 & 6 & 7 & 0 \end{pmatrix}$

Code No.: 7377

- 8. If $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$ then
 - (a) $\det C = \det A + \det B$
 - (b) $\det C = \det A \cdot \det B$
 - (c) $\det C = \det A \det B$
 - (d) $\det C = 2 \det A + \det B$
- 9. If N is normal and if for $\lambda \in F$, $v(N-\lambda)^k = 0$ then vN is
 - (a) $\lambda^k v$
- (b) λυ
- (c) $(-\lambda)^k v$
- (d) 0
- 10. If 2,3, -4, -5, -7,0,0 are the characteristic roots of a real symmetric matrix A then the signature of A is
 - (a) 5
- (b) 1
- (a) -1
- (d) 7

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) If V is finite dimensional, prove that $\psi: V \to \hat{V}$ defined by $v\psi = T_v$ for every $v \in V$, where $T_v(f) = f(v)$ for any $f \in \hat{V}$, is an isomorphism of V on \hat{V} .

Or

Page 4

Code No.: 7377

[P.T.O.]

- (b) If V is a finite dimensional inner product space and if W is a subspace of V, prove that V is the direct such of W and W^{\perp} .
- 12. (a) If V is finite dimensional over F, prove that $T \in A(v)$ is invertible if and only if the constant term of the minimal polynomial for T is not zero

Or

- (b) Prove that $\lambda \in F$ is a characteristic root of $T \in A(v)$ if an only if for some $v \neq 0$ is V, $vT = \lambda v$
- 13. (a) If V is n-dimensional over F and if $T \in A(v)$ has all its characteristic roots in F, prove that V satisfies a polynomial of degree n over F.

Or

- (b) If $T \in A(v)$ is nilpotent, prove that $\alpha_0 + \alpha_1 T + \dots + \alpha_m T^m$ where the $\alpha_i \in F$ is invertible if $\alpha_0 \neq 0$.
- 14. (a) If V is cyclic relative to T and if the minimal polynomial of T in F(x) is p(x), then prove that for some basis of V the matrix of T is C(p(x)).

Or

(b) State and prove Jacobson lemma.

Page 5 Code No.: 7377

- (i) $1, x, x^2, x^3$
- (ii) $1, 1+x, 1+x^2, 1+x^3$
- (iii) If the matrix in part (1) is A and that in part (2) is B, find a matrix C so that B = cAc⁻¹.
- 18. (a) If $T \in A(v)$ has all its characteristic roots in F, prove that there is a basis of V in which the matrix of T is triangular.

Or

- (b) Let $T \in A(v)$ and let $p(x) = q_1(x)^{l_1} \ q_2(x)^{l_2}$ $q_k(x)^{l_k}$ be the minimal polynomial of T over F.

 Let $V_i = \left\{ v \in V \middle| vq_i(T)^{l_i} = 0 \right\}$. For each i = 1, 2, k, prove that $V_i \neq (0)$ and $V = V_1 \oplus V_2 + \ldots \oplus V_k$.
- 19. (a) If F is a field of characteristic 0 and if $T \in A_F(v)$ is such that $trT^i = 0$ for all $i \ge 1$, prove that T is nilpotent.

Or

Page 7

(b) Prove that (i) $\det A = \det(A')$ (ii) A is invertible if and only if $\det A \neq 0$.

Code No.: 7377

15. (a) If (vT, vT) = (v, v) for all $v \in v$, prove that T is unitary.

Or

(b) If N is normal and AN = NA, prove that AN * = N * A.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

16. (a) Define an inner product space V with an example and show that if $u,v\in V$ then $|(u,v)|\leq \|u\|\|v\|$

Or

- (b) Let R be Euclidean ring. Prove that any finitely generated R-module is direct sum of a finite number of cyclic submodules.
- 17. (a) If V is finite dimensional over F then for S, $T \in A(v)$ prove that $r(ST) \le n(T)$, $r(TS) \le r(T)$ and r(ST) = r(TS) = r(T) for S regular in A(v)

Or

(b) Suppose V is the vector space of all polynomials over F of degree 30 less and let D be the differentiation operator : Compute the matrix of D in the basis

Page 6 Code No.: 7377

20. (a) If $T \in A(v)$, prove that (i) $T^* \in A(v)$ (ii) $(T^*)^* = T$ (iii) $(S + T)^* = S^* + T^*$.

Or

(b) State and prove Sylvester's law.

Page 8 Code No.: 7377