Code No.: 7370

Sub. Code: ZMAM 22

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

Second Semester

Mathematics - Core

ANALYSIS - II

(For those who joined in July 2021-2022 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. $L(P, f, \alpha)$ — $L(P^{\bullet}, f, \alpha)$
 - (a) <
- (b) >
- (c)
- (d) ≥
- If x > 0I(x) = -
- (b) o
- (c) -1
- (d) 1

- is rational then of $\lim_{m\to\infty} \lim_{n\to\infty} (\cos m! \pi x)^{2n}$ is (a)
 - 0
- (c)
- (d) ∞
- The value of $\Gamma(n)$ is -
 - (a)
- (b) n-1
- (c)
- (d) (n-1)!
- The value of $\lim_{k\to\infty} \int_{1}^{2\pi} (\sin n_k x \sin n_{k+1} x)^2 dx =$
 - (a)
- (b) 1
- (c)
- (d) 2π
- A family F of complex functions f defined on a set E in a metric space X is said to be equi-continuous on E if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that |f(x) - f(y)| —
 - (a)
- (b) ≤
- (c)
- (d) ≥
- The value of $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = -$
- (c)
- (d) e^x

Code No.: 7370 Page 2

- The value of $\lim_{x\to 0} \frac{\log(1+x)}{x}$ is -8.
 - (a)
- (b) 0
- (c)
- (d) e^x
- The value of $\int_{0}^{\infty} e^{-s^{2}}$ is
 - (a)
- (b) $\sqrt{\pi}$
- (c)
- (d) ∞
- The value of $\Gamma(4)$ is
 - (a)
- (b) 2
- (c)
- (d) 6

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) If f is continuous on [a, b] then prove that, $f \in \mathcal{R}(\alpha)$ on [a, b].

Or

Page 3

Code No.: 7370

- Suppose φ is a strictly increasing continuous function that maps an interval [A, B] onto [a, b] and α is monotonically increasing on [a, b] with $f \in \mathcal{R}(\alpha)$ on [a, b]. Define β and g on [A, B] by $\beta(y) = \alpha(\varphi(y))$, $g(y) = f(\varphi(y))$. Then prove that, $g \in \mathcal{R}(\beta)$ and $\int_{\alpha}^{\beta} g \ d\beta = \int_{\alpha}^{\beta} f \ d\alpha$.
- 12. (a) If f maps [a, b] into R^k and if $f \in \mathcal{R}(\alpha)$ for some monotonically increasing function α on [a, b], then prove that $|f| \in \mathcal{R}(\alpha)$, and $\left|\int_{0}^{b}fd\alpha\right|\leq\int_{0}^{b}\left|f\right|d\alpha.$

Or

Suppose $\{f_n\}$ is a sequence of functions defined on E, and suppose $|f_n(x)| \le M_n$ $(x \in E, n = 1,2,3,...)$ then prove that $\sum f_n$ converges uniformly on E if $\sum f_n$ converges.

13. (a) Let α be monotonically increasing on [a, b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a, b], for n = 1, 2, 3, ..., and suppose $f_n \to f$ uniformly on [a, b]. Then prove that, $f \in \mathcal{R}(\alpha)$ on [a, b] and $\int_a^b f \, d\alpha = \lim_{n \to \infty} \int_a^b f_n d\alpha$.

Or

- (b) If K is a compact metric space, if $f_n \in \mathcal{C}(K)$ for n = 1, 2, 3, ..., and if $\{f_n\}$ converges uniformly on K, then prove that $\{f_n\}$ is equicontinuous on K.
- 14. (a) Prove that for every interval [-a, a] there is a sequence of real polynomial P_n such that $P_n(0) = 0$ and such that $\lim_{n \to \infty} P_n(x) = |x|$ uniformly on [-a, a]

Or

(b) Given a double sequence $\{a_{ij}\}, i=1,2,3,...,$ j=1,2,3,..., suppose that $\sum_{j=1}^{\infty} |a_{ij}| = b_i$ (i=1,2,3,...) and $\sum b_i$ converges. Then prove that $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}$.

Page 5 Code No.: 7370

17. (a) Prove that, if γ' is continuous on [a, b], then γ is rectifiable, and $\Lambda(\gamma) = \int_{-\infty}^{b} |\gamma'(t)| dt$.

Or

- (b) Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that $\lim_{t\to x} f_n(t) = A_n \ (n=1,2,3,...)$. Then prove that $\{A_n\}$ converges, and $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$. In other words, $\lim_{t\to x} \lim_{n\to\infty} f_n(t) = \lim_{n\to\infty} \lim_{t\to x} f_n(t)$
- 18. (a) Prove that there exists a real continuous function on the real line which is nowhere differentiable.

Or

- (b) If K is compact, if $f_n \in \mathcal{C}(K)$ for n = 1, 2, 3, ..., and if $\{f_n\}$ is point wise bounded and equi-continuous on K, then prove the following:
 - (i) $\{f_n\}$ is uniformly bounded on K
 - (ii) $\{f_n\}$ contains a uniformly convergent subsequence.

15. (a) If f is continuous and if $\varepsilon > 0$, then prove that there is a irigonometric polynomial P such that $|P(x) - f(x)| < \varepsilon$ for all real x.

Or

(b) Prove that if x > 0 and y > 0, then $\int_{0}^{1} t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \text{ this integral is}$ the so-called beta function $\beta(x, y)$.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Let $f \in \mathcal{R}$ on [a, b], for $a \le x \le b$, put $F(x) = \int_{a}^{x} f(t) dt$. Then prove that F is continuous on [a, b]; furthermore, if f is continuous at a point x_0 of [a, b], F is differentiable at x_0 and $F'(x) = f(x_0)$.

Or

(b) Suppose $f \in \mathcal{R}(\alpha)$ on [a, b], $m \le f \le M$, ϕ is continuous on [m, M] and $h(x) = \phi(f(x))$ on [a, b], then Prove that $h \in \mathcal{R}(\alpha)$ on [a, b].

Page 6 Code No.: 7370

19. (a) Let $\mathscr A$ be an algebra of real continuous functions on a compact set K. If $\mathscr A$ separates points on K and if $\mathscr A$ vanishes at no point of K, then prove that the uniform closure $\mathscr A$ of $\mathscr A$ consists of all real continuous functions on K.

Or

- (b) State and prove Taylor's theorem.
- 20. (a) Let $\{\phi_n\}$ be ortho-normal on [a, b], let $s_n(x) = \sum_{m=1}^n c_m \phi_m(x)$ be the nth partial sum of the Fourier series of f, and suppose $t_n(x) = \sum_{m=1}^n \gamma_m \phi_m(x)$. Then prove that $\int_a^b |f s_n|^2 dx \le \int_a^b |f t_n|^2 dx$, and equality holds iff $\gamma_m = c_m(m = 1, ...n)$.

Or

(b) State and prove Parseval's theorem.