17	pages)	
1,	pages	

Reg. No	. :	
---------	-----	--

Code No.: 7369

Sub. Code: ZMAM 21

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023

Second Semester

Mathematics - Core

ALGEBRA - II

(For those who joined in July 2021 - 2022 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. If R is a commutative ring and $a \in R$, the $aR = \{ar \mid r \in R\}$ is a ideal of R
 - (a) right ideal
- (b) left ideal
- (c) two-sided ideal .
- (d) none of the above
- - (a) one-to-one
- (b) onto
- (c) bijection
- (d) none of the above

- 8. Let R be any commutative regular ring. Then the J-radical of a ring R is ———
 - (a) {1}
- (b) {0}
- (c) R
- (d) none of the above
- 9. A ring R is isomorphic to a subdirect sum of $\frac{1}{1}$ if and only if R is without a prime ideal.
 - (a) ideals
- (b) integral domain
- (c) prime ideals
- (d) none of the above
- 10. If $R^{V} \neq \{0\}$, then the annihilator of the set of zero divisors of R is ————
 - (a) R
- (b) {0}
- (c) R^V
- (d) None of the above

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then R is a field.

O

- (b) (i) If U is an ideal of R and $1 \in U$, prove that U = R.
 - (ii) If U, V are ideals of R, let $U+V=\{u+v\,|\,u\in U,v\in V\}$. Prove that U+V is also an ideal.

Page 3 Code No.: 7369

- Suppose m is a prime element in the Euclidean ring and $m \mid ab$ where $a,b \in R$, then m divides
 - (a) a
- (b) *b*
- (c) (a) and (b)
- (d) (a) or (b)
- 4. The gcd of 3+4i and 4-3i in J[i] is ______
 - (a) 2-i
- (b) 2+i
- (c) 1+2i
- (d) none of the above
- 5. Which of the following is the unique factorization domain?
 - (a) Z
- (b) $Z(\sqrt{-5})$
- (c) (a) and (b)
- (d) no one of the above
- 6. $x^3 9$ is reducible over the
 - (a) integers mod 5
- (b) integers mod 7
- (c) integers mod 11 (d)
 - (d) none of the above
- 7. Let F[[x]] be the ring of formal power series over a field F. Then rad F[[x]] = ----
 - (a) (0)
- (b) (1).
- (c) (x)
- (d) none of the above

Page 2 Code No.: 7369

12. (a) Prove that a necessary and sufficient condition that the element a in the Euclidean ring be a unit is that d(a) = d(1).

Or

- (b) Let p be a prime integer and suppose that for some integer c relatively prime to p we can find integers x and y such that $x^2 + y^2 = cp$. Then p can be written as the sum of squares of two integers, that is, there exists integers a and b such that $p = a^2 + b^2$.
- 13. (a) State and prove the division algorithm.

Or

- (b) Define primitive polynomial and prove that if f(x) and g(x) are primitive polynomials, then f(x)g(x) is a primitive.
- 14. (a) Prove that the ring Z of integers is semisimple.

Or

(b) The prime radical of the ring R coincides with the nil radical of R; that is Rad R is simply the ideal of all nilpotent elements of R.

Page 4 Code No.: 7369

[P.T.O.]

15. (a) An element $a \in R$ is quasi-regular if and only if $a \in I_a$.

O

(b) For any ring R, R/rad R is isomorphic to a subdirect sum of fields.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

- 16. (a) (i) Let R be the ring of integers. Then the ideal $M = (n_0)$ is maximal if and only if n_0 is prime.
 - (ii) If R is a commutative ring with unit element and M is an ideal of R, then M is a maximal ideal of R if and only if R/M is a field.

Or

- (b) Prove that every integral domain can be imbedded in a field.
- 17. (a) State and prove unique factorization theorem.

Or

(b) The ideal $A = (a_0)$ is a maximal ideal of the Euclidean ring R if and only if a_0 is a prime element of R.

Page 5 Code No.: 7369

- (b) If R is a ring for which $R^{\vee} \neq \{0\}$, then
 - (i) ann R^{\vee} is a maximal ideal of R
 - (ii) ann R^v consists of all zero divisors f R, plus zero
 - (iii) whenever R is without prime radical, R forms a field.

18. (a) State and prove the Eisenstein criterion.

Or

- (b) If R is a unique factorization domain and if p(x) is a primitive polynomial in R[x], then it can be factored in a unique way as the product of irreducible elements in R[x].
- 19. (a) Let I be an ideal of the ring R. Further, assume that the subset $S \subseteq R$ is closed under multiplication and disjoint from I. Then prove that there exists an ideal R which is maximal in the set of ideals which contain I and do not meet S; any such ideal is necessarily prime.

Or

- (b) Show that a ring R is a primary ring if and only if it has a minimal prime ideal which contain all zero divisors.
- 20. (a) Let $I_1, I_2, ... I_n$ be a finite set of ideals of the ring R. If $I_i + I_j = R$, whenever $i \neq j$, then $R/\bigcap I_{i \simeq} \Sigma \oplus \left(\frac{R}{I_i}\right).$

Or

Page 6 Code No.: 7369