Code No. : 7381

Sub. Code : ZMAE 31

M.Be. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

Third Semester

Mathematics - Elective

ALGEBRAIC NUMBER THEORY

(For those who joined in July 2021-2022 onwards)

Time: Three hours

Maximum: 75 marks

PART A - (10 × 1 = 10 marks)

Answer ALL questions:

Choose the correct answer:

- If ax + by = c is solvable then it has a solution x_0, y_0 with
 - (a) $0 \le x_0 \le b$
- (b) $0 \ge y_0 \ge |b|$
- (c) $|a| \le x_0 \le b$
- (d) $|a| > y_0 > |b|$

- Let a,b,c be positive integers, then there is no solution of ax + by = c in positive integers if
 - (a) a+b < c
- (b) a + b = c
- (c) a+b>c
- (d) a > b + c
- Consider a right angle triangle the area cannot be 3. a perfect square then
 - (a) The length of the sides are integers
 - (b) The length of the sides are rational
 - (c) The length of the sides are irrational
 - (d) The length of the sides are in decimals
- If x, y, z are integers such that $x^2 + y^2 + z^2 = 2xyz$ 4. then
 - (a) $x \neq y \neq z$
- (c) $x \neq y = z$
- (d) x = y = z = 0
- If we define $r_n = \langle a_0, a_1, ... a_n \rangle$ for all integers $n \ge 0$ then

 - (a) $r_n = k_n / h_n$ (b) $r_n = \frac{h_n}{k}$

 - (c) $r_n = \frac{k_n h_n}{r}$ (d) $r_n = \frac{h_{n-1}}{k_n}$

Page 2

Code No.: 7381

- Any finite simple continued fraction represents
 - (a) Real number
- (b) Irrational number
- (c) Rational number
- (d) Decimal
- If α is any integer and ϵ any unit in $\mathbb{Q}(\sqrt{m})$ then
 - (a) ∈ / α
- (h) α/ε
- (c) Jm/2
- (d) ϵ/\sqrt{m}
- A quadratic field $\mathbb{Q}(\sqrt{m})$ is called real if
 - (a) m = 1
- (b) m < 0
- (e) m > 1
- (d) m > 0
- Let $\mathbb{Q}\left(\sqrt{m}
 ight)$ have a unique factorization property if (2,m)=1 then 2 is the associate of a square of a prime if
 - (a) $m \approx 3 \pmod{4}$
- (b) $m \equiv 2 \pmod{4}$
- (c) $m = 4 \pmod{3}$
- (d) $m = 2 \pmod{5}$
- 10. $\sqrt{3}-1$ and $\sqrt{3}+1$ are associates in
 - (a) $\mathbb{Q}(\sqrt{2})$
- (b) Q(\sqrt{3})
- (c) $Q(\sqrt{-2})$
- (d) $\mathbb{Q}(\sqrt{-3})$

Page 3

Code No.: 7381

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL the questions, choosing either (a) or (b).

(a) If the system of linear equations $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2...a_{m1}x_1 + a_{m2}x_2 + ... +$ $a_{mn}x_n = b_m$ has a real solution and the system $a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \equiv b_1 \pmod{q}$ $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2 \pmod{q}...$ $a_{m1} + x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \pmod{q}$ has a solution for every modules q, then prove that the equations $a_{11}x_1 + a_{12}x_2 + ... + a_{1n} + x_n = b_1$, $a_2, x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2...a_{m1}x_1 + a_{m2}x_2... +$ $a_{mn}x_n = b_m$ have an integral solution?

(b) Prove that the positive primitive solutions of $x^2 + y^2 = z^2$ with y even are $x = r^2 - s^2$, y = 2rs, $z = r^2 + s^2$ where r and s are arbitrary integers and opposite parity with r > s > 0 and (r,s) = 1?

Code No.: 7381

12. (a) Determine whether the Diophantine equation $x^2 - 5y^2 - 91z^2 = 0$ has a non-trivial integral solution?

Or

- (b) Let λ, μ, γ be positive real numbers with product $\lambda \mu v = m$ an integer then prove that any congruence $\alpha x + \beta y + \gamma z \equiv 0 \pmod{m}$ has a solution x, y, z not all zero such that $|z| \le \lambda$, $|y| \le \mu |z| \le v$?
- (a) If a polynomial equation with integral coefficients
 C_nxⁿ + C_{n-1}xⁿ⁻¹ + + C₂x² + C₁x + C₀ = 0,
 C_n ≠ 0 has a non zero rational solution a/b where the integers a and b are relatively prime then prove that a/c₀ and b/c_n?

Or

- (b) Prove that two distinct infinite simple continued fractions converge to different values?
- 14. (a) Let Σ denote any irrational number. If there is a rational number a/b with $b \ge 1$ such that $\left|\Sigma \frac{a}{b}\right| < \frac{1}{2b^2}$ then prove that a/b equals one of the convergents of the simple continued fraction expansion of Σ ?

Or

Page 5 Code No.: 7381

- (iii) U may be expressed as a product of elementary row matrices $U = R_a R_{a-1} R_2 R_1$
- (iv) U may be expressed as a product of elementary column matrices $U = C_1 C_2 C_{h-1} C_h$.
- 17. (a) Determine whether the Diophantine equation $x^2 + 3y^2 + 5z^2 + 7xy + 9yz + 11zx = 0$ has a nontrivial integral solution?

Or

- (b) Let a,b and c be any arbitrary integers then prove that the congruence $ax^2 + by^2 + cz^2 \equiv 0 \pmod{p}$ has a nontrivial solution \pmod{p} ?
- 18. (a) Prove that π is irrational.

Or

- (b) Prove that the value of any infinite simple continued fraction $\langle a_0, a_1, a_2... \rangle$ is irrational?
- 19. (a) Show that the set of all algebraic numbers formula field and the set of all algebraic integers forms a ring?

Or

Page 7 Code No.: 7381

- (b) Prove that the minimal equation of an algebraic integer is monic with integral co-efficients?
- 15. (a) Let $\mathbb{Q}(\sqrt{m})$ have the unique factorization property then prove that any prime π in $\mathbb{Q}(\sqrt{m})$ there corresponds one and only one rational prime p such that π/p ?

Or

(b) If the norm of an integer α in $\mathbb{Q}(\sqrt{m})$ is $\pm P$ where p is a rational prime then prove that α is a prime?

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL the questions, choosing either (a) or (b)

16. (a) Prove that the equation $15x^2 - 7y^2 = 9$ has no solution in integers.

Or

- (b) Let U be an $m \times n$ matrix with integral elements then prove the following are equivalent?
 - (i) U is unimodular
 - (ii) The inverse matrix U^{-1} exists and has integral elements

Page 6 Code No.: 7381

- (b) If the norm of a product equals the product of the norms then prove that $N(\alpha\beta) = N(\alpha N(\beta) N(\alpha) = 0$ if and only if $\alpha = 0$ and if the norm of an integer in $\mathbb{Q}(\sqrt{m})$ is a rational integer, then prove that if γ is an integer in $\mathbb{Q}(\sqrt{m})$ then $N(\gamma) = \pm 1$ if and only if γ is a unit?
- 20. (a) Let $\mathbb{Q}(\sqrt{m})$ have the unique factorization property then prove that (i) Any rational prime P is either a prime π of the field or a product π, π_2 of two primes, not necessarily distinct of $\mathbb{Q}(\sqrt{m})$. (ii) An odd rational prime P satisfying (P,m)=1 is a product π,π_2 of two primes in $\mathbb{Q}(\sqrt{m})$ if and only if $\left(\frac{m}{P}\right)=1$?

Or

(b) Prove that the fields $\mathbb{Q}(\sqrt{m})$ for m=-1,-2,-3,-7,2,3 are Euclidean and so have the Unique factorization property?

Page 8 Code No.: 7381