Code No.: 7758

Sub. Code: WMAE 15

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

First Semester

Mathematics - Elective - II

ANALYTIC NUMBER THEORY

(For those who joined in July 2023 onwards)

Time: Three hours

Maximum : 75 marks

PART A —
$$(15 \times 1 = 15 \text{ marks})$$

Answer ALL questions.

Choose the correct answer:

- 1. $d/n \Rightarrow$
 - (a) n/d
- (b) d + 1/n
- (c) ad/an
- (d) d/n+1
- - (a) (b, a)
- (b) (a+1, b)
- (c) (a, b+1)
- (d) (a+1, b+1)

- 9. d(n) is the ———.
 - (a) number of divisiors of n
 - (b) n
 - (c) n^2
 - (d) sum of the divisiors of n
- 10. Euler's constant $c = \frac{1}{c}$
 - (a) $\lim_{n\to\infty} \log n$
 - (b) $\lim_{n\to\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \log n\right)$
 - (c) $\lim_{n\to\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)$
 - (d) n^2
- 11. If f(x) = O(g(x)), g(x) > 0, then
 - (a) $\frac{f(x)}{g(x)}$ is bounded for all $x \ge a$
 - (b) $\frac{g(x)}{f(x)}$ is bounded for all $x \ge a$
 - (c) $\frac{f(x)+1}{g(x)+1}$ is bounded for all $x \ge a$
 - (d) f(x)g(x) is bounded for all $x \ge a$

- - (a) 2
- (b) 8
- (c) 20
- (d) 4
- 4. $\mu(4) = -----$
 - (a) 1
- (b) 0
- (c) 8
- (d) -1
- - (a) 0
- (b) 1
- (c) 4
- (d) -1
- 6. $\phi(6) = -$
 - (a) 1
- (b) -3
- (c) 2
- (d) 4
- 7. If f is multiplicative, then f(1) = ----
 - (a) 0
- (b) -1
- (c) 1
- (d) 6
- 8. $\lambda(1) = -$
 - (a) 6
- (b) 3
- (c) -1
- (d) 1

Page 2 Code No.: 7758

- 12. If $f(x) \sim g(x)$ as $x \to \infty$, then $\lim_{x \to \infty} \frac{f(x)}{g(x)} =$
 - (a) 0
- (b) 7
- (c) 10
- (d) 1
- 13. If a(n) is the characteristic function of prime, then a(7) = ----.
 - (a) 1
- (b) 0
- (c) -1
- (d) 2
- 14. $U\left(\frac{1}{2}\right) = -$
 - (a) -1
- (b) -2
- (c) 0
- (d) 1
- 15. For x > 0, the chebyshev's χ -function $\chi(x) = \frac{1}{2\pi i x}$
 - (a) \wedge (n)
- (b) $\sum_{n \le r} \wedge (n)$
- (c) $\sum_{n=0}^{\infty} \wedge (n)$
- (d) $\prod_{n \le x} \wedge (n$

PART B - (5 × 4 = 20 marks)

Answer ALL questions, choosing either (a) or (b).

16. (a) Prove that every integer n > 1 is either a prime number or a product of prime numbers.

Or

- (b) If (a, b) = 1, then prove that $(a+b, a^2 ab + b^2)$ is either 1 or 3.
- 17. (a) If $n \ge 1$, prove that

$$\sum_{d \mid n} \mu(d) = \begin{bmatrix} \frac{1}{n} \end{bmatrix} = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1 \end{cases}$$

Or

- (b) If $n \ge 1$ prove that $\phi(n) = \sum_{d \mid n} \mu(d) \frac{n}{d}$.
- 18. (a) If f and g are multiplicative, then prove that their Dirichlet product f * g is also multiplicative.

Or

(b) Let $f(n) = [\sqrt{n}] - [\sqrt{n-1}]$. Then prove that f is multiplicative but not completely multiplicative.

Page 5 Code No.: 7758

22. (a) For $n \ge 1$, prove that $\phi(n) = n \prod_{p \neq n} \left(1 - \frac{1}{p}\right)$.

Or

- (b) If f is an arithmetical function with $f(1) \neq 0$, then prove that there is a unique arithmetical function f^{-1} such that $f * f^{-1} = f^{-1} * f = I$. Moreover f^{-1} is given by $f^{-1}(1) = \frac{1}{f(1)}$ and $f^{-1}(n) = \frac{-1}{f(1)} \sum_{d \mid n} f\left(\frac{n}{d}\right) f^{-1}(d), \text{ for } n > 1.$
- 23. (a) Let f be multiplicative. Then prove that f is completely multiplicative if and only if $f^{-1}(n) = \mu(n)f(n)$ for all $n \ge 1$.

Oı

- (b) Prove that $\sigma_1(n) = \sum_{d \mid n} \phi(d) o\left(\frac{n}{d}\right)$ and derive a generalization involving $\sigma_{\sigma}(n)$.
- 24. (a) State and prove Euler's summation formula.

Oı

(b) For all $x \ge 1$, prove that $\sum_{n \le x} d(n) = x \log x + (2c - 1)x + o(\sqrt{x}).$

19. (a) For all $x \ge 1$, prove that $\sum_{n \le x} \sigma_1(n) = \frac{1}{2}$ and $(2)x^2 + O(x \log x)$.

Or

- (b) If $\beta > 0$, let $\delta = Min\{0, 1 \beta\}$. If x > 1, prove that $\sum_{n \le x} \sigma_{-\beta}(n) = \xi(\beta + 1) + O(x^{\delta})$ if $\beta \ne 1 = \xi(2)x + O(\log x)$ if $\beta = 1$.
- 20. (a) For $x \ge 1$, prove that $\sum_{n \le x} \mu(n) \left[\frac{x}{n} \right] = 1$ and $\sum_{n \le x} \wedge (n) \left[\frac{x}{n} \right] = \log[x]!$

Or

(b) If $x \ge 2$, prove that $\log[x]! = x \log x - x + 0(\log x)$ and hence $\sum_{x \in X} \wedge (n) \left[\frac{x}{n} \right] = x \log x - x + 0(\log x).$

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

21. (a) State and prove Fundamental theorem of arithmetic.

Or

(b) State and prove the Euclidean algorithm.

Page 6 Code No.: 7758

25. (a) For x > 0, prove that $0 \le \frac{\chi(x)}{x} - \frac{\gamma(x)}{x} \le \frac{(\log x)^2}{2\sqrt{x} \log 2}.$

Or

(b) Prove that the following are logically equivalent

(i)
$$\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1$$

(ii)
$$\lim_{x\to\infty}\frac{\gamma(x)}{x}=1$$

(iii)
$$\lim_{x\to\infty}\frac{\chi(x)}{x}=1.$$