Code No.: 5386

Sub. Code: ZMAM 44

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023.

Fourth Semester

Mathematics - Core

TOPOLOGY - II

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. A space which contains a countable dense subset is called
 - (a) Separable
 - (b) Lindelöf
 - (c) Second countable
 - (d) Compact

- 6. Find the correct answer
 - (a) Subspace of a Normal space is normal
 - (b) Product of Normal spaces is normal
 - (c) R_{i}^{2} is completely regular
 - (d) R_K is regular but not normal
- 7. The set is locally finite in R?
 - (a) $\{(n-1,x+1): n \in Z\}$
 - (b) $\left\{ \left(0, \frac{1}{n}\right) : n \in \mathbb{Z}_+ \right\}$
 - (c) $\left\{ \left(\frac{1}{n+1}, \frac{1}{n} \right) : n \in \mathbb{Z}_+ \right\}$
 - (d) $\{(x,x+1): x \in R\}$
- 8. Let $A = \{(n-1, n+1) : n \in Z\}$. Which of the following refine A.

Page 3

- (a) $\left\{ \left(n \frac{1}{2}, n + \frac{3}{2} \right) : n \in \mathbb{Z}_+ \right\}$
- (b) $\left\{ \left(n + \frac{1}{2}, n + \frac{3}{2} \right) : n \in \mathbb{Z}_+ \right\}$
- (c) $\left\{\left(n-\frac{1}{2},n+2\right):n\in Z_+\right\}$
- (d) $\{(x,x+1):x\in R\}$

- 2. Another name for Regular space is
 - (a) T_4
- b) $T_{2\frac{1}{2}}$
- (c) $T_{3\frac{1}{2}}$
- (d) T₃
- 3. Every regular Lindeloff space is
 - (a) normal
 - (b) completely regular but not normal
 - (c) regular but not completely regular
 - (d) compact and Hausdorff.
- 4. A space X is completely regular then it is homeomorphic to a subspace of
 - (a) $[0, 1]^J$
 - (b) \mathbb{R}^n where n is a finite
 - (c) R
 - (d) $(0, 1)^J$ where J is uncountable
- 5. Tietze extension theorem implies
 - (a) The Urysohn Metrization theorem
 - (b) Heine-Borel Theorem
 - (c) The Urysohn lemma
 - (d) The Tychonof theorem.

Page 2 Code No.: 5386

- 9. Which of the following is not true
 - (a) Every non empty open subset of the set of irrational numbers is of first category
 - (b) Open subspace of a Baire space is a Baire space
 - (c) Rationals as a subspace of real numbers is not a Baire space.
 - (d) If $X = \bigcup_{n=1}^{\infty} B_n$ and X is a Baire space with

 $B_1 \neq \phi$, then atleast one of $\overline{B_n}$ has nonempty interior.

- 10. Find the incorrect statement
 - (a) Any set X with discrete topology is a Baire space
 - (b) Every locally compact space is a Baire space
 - (c) [0, 1] is a Baire space
 - (d) The set of irrationals is not a Baire space

Code No.: 5386

PART B - $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Let X be a space with one point sets in X are closed. Prove that X is regular if and only if given a point x of X and a neighborhood U of x, there is a neighborhood V of x such that \(\overline{V} \subseteq U\).

Or

- (b) Define \mathbb{R}_k topological space. Prove that \mathbb{R}_k is Hausdorff but not regular.
- 12. (a) Examine the proof of Urysohn lemma and show that for a given r, $f^{-1}(r) = \left(\bigcap_{p>r} U_p \bigcup_{q < r} U_q\right), \text{ where } p \text{ and } q \text{ are rational}$

Or

- (b) Prove that every normal space is completely regular and completely regular space is regular.
- 13. (a) State and prove imbedding theorem.

Or

(b) Prove that Urysohn lemma can be proved by using Tietze extension theorem.

Page 5 Code No.: 5386

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) What are the countability axioms. Prove that the space R_L satisfies all the countability axioms but the second.

Or

- (b) Prove that product of Lindelof spaces need not be Lindelof.
- 17. (a) Define a regular space, a Lineloff space and a normal space. Prove that every regular Lindeloff space is normal.

Or

- (b) (i) Prove that every normal space is completely regular and completely regular space is regular.
 - (ii) Prove that product of completely regular spaces is completely regular.
- 18. (a) State and prove Tietze extension theorem.

Or

(b) State and prove Uryzohn's metrization theorem. 14. (a) Let A be a locally finite collection of subsets of X. Then prove that (i) The collection $B = \{\overline{A} : A \in \mathcal{A}\}$ is locally finite. (ii) $\overline{\bigcup_{A \in \mathcal{A}} A} = \overline{\bigcup_{A \in \mathcal{A}} A}$.

Or

- (b) Define finite intersection property. Let X be a set and D be the set of all subsets of X that is maximal with respect to finite intersection property. Show that (i) x∈ A∀A∈D if and only if every neighborhood of x belongs to D.
 (ii) Let A∈D. Then prove that B⊃A⇒B∈D.
- 15. (a) Define a first category space. Prove that X is a Baire space if and only if 'given any countable collection $\{U_n\}$ of open sets in X, U_n is dense in $X \forall n$, then $\cap U_n$ is also dense'.

Or

(b) Define a Baire space. Whether Q the set of rationals as a space is a Baire space? What about if we consider Q as a subspace of real numbers space. Justify your answer.

Page 6 Code No.: 5386

19. (a) Let X be a metrizable space. If A is an open covering of X, then prove that there is an open covering ξ of X refining A that is countably locally finite.

Or

- (b) State and prove Tychonoff theorem.
- 20. (a) Let X be a space; let (Y, d) be a metric space. Let $f_n: X \to Y$ be a sequence of continuous functions such that $f_n(x) \to f(x)$ for all $x \in X$, where $f: X \to Y$. If X is a Baire space, prove that the set of points at which f is continuous is dense in X.

Or

(b) State and prove Baire Category theorem.