Code No.: 5385

Sub. Code: ZMAM 43

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023.

Fourth Semester

Mathematics - Core

FUNCTIONAL ANALYSIS

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. Which one of the following is not true?
 - (a) Every complete normed linear space is a Banach space
 - (b) The norm is a continuous function
 - (c) If the linear transformation T is continuous then T is bounded
 - (d) If M is a closed linear subspace of a normed linear space N, then N/M is a Banach space.

- Let N and N' be normed linear spaces. An isometric isomorphism of N into N' is a one to one linear transformation T of N into N' such that
 - (a) $||T(x)|| \le ||x||$ for every x in N
 - (b) ||T(x)|| = ||x|| for every x in N
 - (c) ||T(x)|| = 1
 - (d) $T(x) = T(y) \Rightarrow x = y$
 - 3. If X is a compact Hausdorff space, then $\mathcal{C}(X)$ is reflexive if and only if
 - (a) X is a finite set
 - (b) X is a countable set
 - (c) X is complete
 - (d) X is a Banach space
 - 4. Let T be a linear transformation of B into B'. The graph of T is a subset of
 - (a) B
- (b) B'
- (c) $B \times B'$
- (d) $B' \times B$

Page 2 Code No.: 5385

- 5. The parallelogram law states that
 - (a) $||x+y||^2 + ||x-y||^2 = 2||x||^2 2||y||^2$
 - (b) $\|x+y\|^2 2\|x\|^2 = 2\|y\|^2 \|x-y\|^2$
 - (c) $||x + y||^2 ||x y||^2 = 2||x||^2 + 2||y||^2$
 - (d) $||x + y||^2 + 2||x||^2 = ||x y||^2 + 2||y||^2$
- 6. If S is a non-empty subset of a Hilbert space then $S^{\perp\perp\perp}$ is
 - (a) S
- (b) S1
- (c) \$
- (d) S11
- 7. Which one of the property is not the property of the adjoint operation $T \rightarrow T^*$ on (R)
 - (a) $(T_1 + T_2)^{\circ} = T_2^{\circ} + T_1^{\circ}$
 - (b) $(T_1 T_2)^* = T_1^* T_2^*$
 - (c) $T^{**} = T$
 - $(d) \qquad \left\| T^*T \right\| = \left\| T \right\|^2$

- 8. A self adjoint operator A is said to be positive if
 - (a) $(Ax, Ax) \ge 0$ for all x
 - (b) (Ax, x) is real for all x
 - (c) $(Ax, x) \ge 0$ for all x
 - (d) $||A^2|| = ||A||^2$
- 9. An operator T on H is self adjoint if and only if
 - (a) $T+T^*=0$
 - (b) (Tx, x) is real for all x
 - (c) $TT = T^T$
 - (d) $||T \cdot x|| = ||Tx||$ for every x
- 10. If P is the projection on M then I-P is the projection on
 - (a) M
 - (b) M^{1}
 - (c) I-M
 - (d) M-M

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Define a Banach space with two examples.

Or

- (b) If M is a closed linear subspace of a normed linear space N and x_0 is vector not in M, prove that there exists a functional f_0 in N^* such that $f_0(m) = 0$ and $f_0(x_0) \neq 0$.
- 12. (a) If N is a normed linear space, prove that the closed unit sphere S in N is a compact Hausdorff space in the weak topology.

Or

- (b) State and prove the closed graph theorem.
- 13. (a) Prove that the inner product in a Hilbert space is jointly continuous.

Or

(b) Let M be a closed linear subspace of a Hilbert space H, let x be a vector not in M, and let d be the distance from x to M. Prove that there exists a unique vector y_0 in M such that $||x-y_0|| = d$.

Page 5 Code No.: 5385

- (b) If N' is a Banach space, prove that the normed linear space (N, N') is also a Banach space.
- 17. (a) Define a reflexive space with an example. If B is a Banach space, prove that B is reflexive $\Leftrightarrow B'$ is reflexive.

Or

- (b) Let B and B' be Banach spaces. Let T be a continuous linear transformation of B onto B'. Prove that the image of each open sphere centered on the origin in B contains an open sphere centered on the origin in B'.
- (a) State and prove the Banach Steinhaus theorem.

Or

- (b) Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.
- 19. (a) State and prove Bessel's inequality.

Or

(b) Let H be a Hilbert space and let f be an arbitrary functional is H^* . Prove that there exists a unique vector y in H such that f(x) = (x, y) for every x in H.

Page 7 Code No.: 5385

14. (a) Let $\{e_1, e_2..., e_n\}$ be a finite orthonormal set in a Hilbert space H. If x is any vector in H, prove that $\sum_{i=1}^{n} |(x, e_i)|^2 \le ||x||^2 \quad \text{and}$ $x - \sum_{i=1}^{n} (x, e_i)e_i \perp e_j \text{ for each } j.$

Or

- (b) Show that an orthonormal set in a Hilbert space is linearly independent.
- 15. (a) If T is an operator on H for which (Tx, x) = 0 for all x, prove that T = 0.

Or

(b) Prove that an operator T on H is unitary ⇒ it is an isometric isomorphism of H onto itself.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b)

16. (a) Let M be a closed linear subspace of a normed linear space N. Prove that N/M is a normed linear space. If N is a Banach space, prove that N/M is also a Banach space.

Or

Page 6 Code No.: 5385

20. (a) If T is an operator on H, prove that T is normal ⇔ its real and imaginary parts commute

Or

(b) If P is a projection on H with range M and null space N, prove that $M \perp N \Leftrightarrow P$ is self adjoint. Also prove that $N = M^{\perp}$ in this case.