Code No.: 5384

Sub. Code: ZMAM 42

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023

Fourth Semester

Mathematics - Core

COMPLEX ANALYSIS

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A - (10 × 1 = 10 marks)

Answer ALL questions.

Choose the correct answer:

- A function u is harmonic if it satisfies

 - (a) $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$ (b) $\frac{\partial^2 u}{\partial x^2} \frac{\partial^2 u}{\partial y^2} = 0$

 - (c) $\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2}$ (d) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

- When C is a circle about G, then $\int \frac{dz}{z-a}$ is
 - (a) 0
- (b) 2π
- (d) 2π a i
- If n(y,a) = 5 then n(-y,a) n(y,-a) is
 - (a) -10
- (c) 10
- (d)
- The value of $\int_{|z|=1}^{e^z} \frac{e^z}{z} dz$ is
- (b) 2πi
- (c) 0
- (d)
- The residue of $\frac{e^z}{(z-a)^2}$ at z=a is

- (d) 1
- 10. If f has a pole or order h, then $f\frac{1}{f}$ has the radius
 - (a)
- (b)
- (e)
- Page 3 Code No. : 5384

- A rational function R(z) of order p has zeros and _____ poles
 - p, p-1(a)
- (b) p-1, p
- D, D
- (d) p, p+1
- 3. If $w = s(z) = \frac{az + b}{cz + d}$, $ad bc \neq 0$, then $s^{-1}(w)$ is given by

- 4. (z_1, z_2, z_3, z_4) is the image of z, under the linear transformation which carries z2, z3, z4 into
 - (a) $0, 1, \infty$
- (b) 1, ∞, 0
- (c) 1. 0. ∞
- (d) 1, 1, 1
- 5. If $\int f(z)dz = 5 + i$, then $-\int f(z)dz$ is
 - (a) 0
- (b) 5+i
- (c) 5-i
- (d)

Page 2 Code No.: 5384

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Derive Cauchy-Riemann 11. (a) equation for any analytic function.

- Prove that $\sum a_n z^n$ and $\sum n a_n z^{n-1}$ have the same radius of convergence.
- 12. (a) Explain a conformal mapping.

- Prove that the reflection $z \rightarrow \overline{z}$ is not a linear transformation.
- that the time 13. (a) Prove $\int Pdx + qdy$ defined in Ω , depends only on the end points of y if and only if there exists a function U(x,y) in Ω such that $\frac{\partial U}{\partial x} = p$, $\frac{\partial U}{\partial y} = q.$

Or

Compute $\int x dz$ for the positive sense of the circle.

> Code No.: 5384 Page 4 [P.T.O.]

14. (a) State and prove Morera's theorem.

Or

- (b) State and prove the fundamental theorem of algebra.
- 15. (a) State and prove the residue theorem.

Or

(b) Compute
$$\int_0^{\pi} \frac{d\theta}{a + \cos \theta}$$
; $a > 1$.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) If all zeros of a polynomial p(z) lies in a half plane, prove that all zeros of the derivative p'(z) lie in the same half plane.

Or

- (b) Find the radius of convergence of the power series
 - $\sum n^p z^n$
 - (ii) $\sum n!z^n$

Page 5 Code No.: 5384

20. (a) State and prove Roucher's theorem.

Or

(b) Evaluate $\int_{-x^4+10x^2+9}^{+\infty} \frac{x^2-x+2}{x^4+10x^2+9} dx$.

17. (a) If $T_1z = \frac{z+2}{z+3}$, $T_2z = \frac{z}{z+1}$, find T_1T_2z , T_2T_1z and $T_1^{-1}T_2z$.

Or

- (b) Investigate the geometric significance of symmetry when
 - (i) C is a straight line
 - (ii) C is a circle of center a and radius R.
- 18. (a) If the function f(z) is analytic on a reactance R, prove that $\int_{AB} f(z) dz = 0$.

Or

- (b) If f(z) is analytic in an open disc Δ , prove that $\int_{\gamma} f(z)dz = 0$ for every closed curve γ in Δ .
- 19. (a) With usual notation prove that $F'_n(z) = nF_{n+1}(z) \text{ if } F_n(z) = \int_{\gamma} \frac{\phi(\xi) d\xi}{(\xi z)n}.$

Or

(b) State and prove Weierstrass theorem for an essential singularity.

Page 6 Code No.: 5384