Reg. No. :

Code No.: 5380

Sub. Code: ZMAM 34

M.Sc. (CBCS) DEGREE EXAMINATION. APRIL 2023

Third Semester

Mathematics - Core

TOPOLOGY - I

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A - (10 × 1 = 10 marks)

Answer ALL questions.

Choose the correct answer:

- Let $X = \{a, b, c, d\}$ which one of the following is a topology on X
 - (a) $\{\phi, X, \{a\}, \{c, d\}\}$
 - (b) $\{X, \{a\}, \{c\}, \{a, c\}\}$
 - $\{\phi, X, \{a, b\}, \{c, d\}\}$ (c)
 - $\{\phi, \{a\}, \{c, d\}, \{a, c, d\}\}$ (d)

- In R, define d(x, y) = |x y|. Then B(3, 0.7) is
 - (a) (3, 3.7)
- (2.3, 3.7)
- (-0.7, 0.7)
- (d) (3.7, 4.4)
- The standard bounded metric \overline{d} corresponding to d is defined by
 - $\max\{1, d(x, y)\}$ (a)
 - (b) $\min\{d(x,y),d(y,x)\}$
 - $\min\{1,d(x,y)\}$ (c)
 - 1+d(x,y)(d)
- and let $X = \{a, b, c, d\}$ Let $l = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}\$ then
 - (a) $(\{a,b\},\{c,d\})$ is a separation of X
 - $(\{a\}, \{b, c, d\})$ is a separation of X
 - $(\{a\}, \{b\})$ is a separation of X (c)
 - X has no separation
- Which one of the following is an open covering for IR?
 - (a) $\{(n, n+1)/n \in z\}$ (b) $\{(n-1,n)/n \in z\}$
 - $\{[n,n+1]/n\in z\}$ $\{(n, n+2)/n \in z\} \quad (d)$
 - Code No.: 5380 Page 3

- 2. (0, 2) is
 - open in R but not open in R,
 - open in R, but not open in R
 - open in R, and open in R (c)
 - not open in R, and not open in R
- If $f: R \to R$ is defined by f(n) = 3x + 1, then $g: R \to R$ is the inverse of f is
 - (a) g(y) = 3y 1
 - g(y) = -3y + 1
 - $g(y) = \frac{1}{3}(y-1)$
 - g(y) = 3(y-1)(d)
- Let $f: A \to X \times Y$ be given by the equation where $f_1:A\to X$ $f(a) = (f_1(a), f_2(a))$ $f_2: A \to Y$ are two functions. If $U \times V$ is a basis element for the product topology of $X \times Y$, then $f^{-1}(U \times V)$ is

 - (a) $f_1^{-1}(U) \cap f_2^{-1}(V)$ (b) $f_1^{-1}(U) \cup f_2^{-1}(V)$

 - (c) $f_1(U) \cap f_2(V)$ (d) $f_1(U) \cup f_2(V)$

Code No.: 5380 Page 2

- A space X is said to be limit point compact is
 - every point is a limit point
 - every infinite subset of X has a limit point (b)
 - every subset of X has a limit point (c)
 - every finite subset of X has a limit point
- 10. The one-point compactification of the real line R is
 - (a)
 - S^2 (b)
 - the extended complex plane (c)
 - (d)

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Let B and B' be bases for the topologies 11. (a) τ and τ' respectively on X. Prove that τ' is fines than τ if and only if for each $x \in X$ and each basis element $B \in \mathbb{C}$ containing x, there is a basis element $B' \in \mathbf{B}'$ such that $x \in B' \subseteq B$.

Or

Prove that every finite point set in a Hausdorff space X is closed.

12. (a) State and prove the pasting lemma.

Or

- (b) Let $\{X_a\}$ be an indexed family of spaces. Let $A_a \subset X_a$ for each a. If πX_a is given either the product or the box topology, prove that $\pi \overline{A_a} = \overline{n} \overline{A_a}$.
- 13. (a) Let d and d' be two metrics on the set X, and let r and r' be the topologies they induce, respectively. Prove that r' is fines than r if and only if for each x in X and each $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_d(x,\delta) \subset B_d(x,\varepsilon)$.

Or

- (b) State and prove the sequence lemma.
- 14. (a) Prove that the image of a connected space under a continuous map is connected.

Or

- (b) Prove that every compact subspace of a Hausdorff space is closed.
- (a) Give an example of a limit point compact space which is not compact.

Or

Page 5 Code No.: 5380

- 17. (a) Let X and Y be topological spaces, let $f: X \to Y$. Prove that the following are equivalent.
 - (i) For every closed set B of Y, the set f'(B) is closed in X
 - (ii) f is continuous
 - (iii) for every subset Λ of X, one has $f(\overline{A}) \subseteq \overline{f(A)}$.

Or

- (b) If each space X_o is a Hausdorff space, prove that πX_o is a Hausdorff space in both the box and product topologies.
- (a) Define a suitable metric D on on R^m and show that D induces the product topology on R^m.

Or

- (b) Show that R^ω in the box topology is not metrizable.
- (a) Prove that a finite Cartesian product of connected space is connected.

Or

(b) Prove that the product of two compact spaces is compact. (b) Let X be a Hausdorff space. Prove that X is exactly compact if and only if given x in X and given a neighborhood U of x, there is a neighborhood V of x such that \overline{V} is compact and $\overline{V} \subseteq U$.

PART C - (5 × 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

16. (a) Define a topology. Write down any three topologies on $X = \{a, b, c\}$. Define the finite complement topology on a set X and show that it is a topology on X.

Or

- (b) Let X be a topological space. Prove that
 - (i) ϕ and X are closed
 - (ii) arbitrary intersections of closed sets are closed
 - (iii) finite unions of closed sets are closed

Page 6 Code No.: 5380

20. (a) Define a limit point compact space and a sequentially compact space. If X is metrizable, prove that if X is limit point compact then it is sequentially compact.

Or

(b) If X is a locally compact Hausdorff space that is not itself compact, then prove that X has a one-point compactification Y.