Code No.: 5377

Sub. Code: ZMAM 31

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023.

Third Semester

Mathematics - Core

ADVANCED ALGEBRA - I

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- If V is a vector space of dimension 5 then dim $\dim Hom(Hom(V,F),F)$ is
 - (a) 125
 - (b) 10
 - (c) 25
 - (d) 5

- If $U \subseteq W$ are subspaces of a vector space V and if A(W) is the annihilator of W then
 - (a) $A(U) \subseteq A(W)$
 - (b) $A(U) \supseteq A(W)$
 - (c) A(U) = A(W)
 - (d) A(U) and A(W) are not comparable
- If V is finite-dimensional over F, then $T \in A(V)$ is singular if and only if there exists a
 - (a) $v \neq 0$ in V such that vT = 0
 - (b) $v \neq 0$ in V such that $vT \neq 0$
 - (c) v = 0 in V such that vT = 0
 - (d) v = 0 in V such that $vT \neq 0$
- If $m(s) = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $m(T) = \begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix}$ then m(ST)

- (a) $\begin{pmatrix} 3 & 6 \\ 9 & 12 \end{pmatrix}$ (b) $\begin{pmatrix} 5 & 6 \\ 5 & 12 \end{pmatrix}$

Page 2 Code No.: 5377

The matrix M_4 is 5.

(a)
$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

(b)
$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

(c)
$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

- If M, of dimension 8, is cyclic w.r.t T, then the dimension of MT^3 is
 - (a) 11
- (b) ·5
- (c) 24
- 7. is the companion matrix of the 7 -6 3 5 polynomial
 - (a) $7-6x+3x^2+5x^3+x^4$
 - (b) $-7+6x-3x^2-5x^3-x^4$
 - (c) $-7+6x-3x^2-5x^3+x^4$
 - (d) $7-6x+3x^2+5x^3$

Code No.: 5377 Page 3

- If $A = \begin{pmatrix} 1 & 15 & 4 \\ 3 & -1 & 0 \end{pmatrix}$ then tr(A) is
 - (a) 6
- (b) 9
- (c) 5
- (d) 7
- If $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$ then $(-1)^{\sigma}$ is
 - (a) 1
- (b) -1
- (c) σ
- (d) $-\sigma$
- 10. $T \in A(V)$ is normal if and only if
 - (a) $TT^* = TT^*$
- (b) $(T^*)^* = T$
- (c) TT * -T * T = 0
- (d) $TT^* = 1$

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) If S, $T \in Hom(V, W)$ and $\lambda \in F$, define S + Tand λS . Also show that $S + T \in Hom(V, W)$.

Or

(b) If $u, v \in V$, Prove that $|u,v| \le ||u|| \cdot ||v||$.

Page 4

Code No.: 5377 [P.T.O.] 12. (a) Let A be an algebra with unit element over F and suppose that A is of dimension mover F. Prove that every element in A satisfies some nontrivial polynomial in F[x] of degree at most m.

Or

- (b) If V is finite dimensional over F and S, $T \in A(V)$ prove that r(ST) = r(TS) = r(T) for S regular in A(V).
- 13. (a) Let V_1 be the subspace of V spanned by v, vT, vT^2 ,..., $vT^{n,-1}$, where $T \in A(V)$. If $u \in V_1$ is such that $uT^{n_1-k} = 0$ where $0 < k \le n_1$, prove that $u = u_0 T^k$ for some $u_0 \in V_1$.

Or

- (b) If $W \subseteq V$ is invariant under T, prove that T induces a linear transformation \overline{T} on V/W defined by $(v+W)\overline{T} = vT + W$.
- 14. (a) State and prove Jacobson lemma.

Or

(b) Prove that the determinant of a triangular matrix is the product of its entries on the main diagonal.

Page 5 Code No.: 5377

18. (a) If $T \in A(V)$ has all its characteristic roots in F, prove that there is a basis of V in which the matrix of T is triangular.

Or

- (b) "Two nilpotent linear transformation are similar if and only if they have the same invariants" prove.
- 19. (a) If the elements S and T in A(V) are similar in A(V), prove that they have the same elementary divisors.

Or

- (b) If F is a field of characteristic 0 and if $T \in A(V)$ is such that $trT^i = 0$ for all $i \ge 1$, prove that T is nilpotent.
- 20. (a) If $T \in A(V)$ is such that $(\nu T, \nu) = 0$ for all $\nu \in V$, prove that T = 0. If V is an inner product space over the real field, prove that the above result may be false.

Or

(b) State and prove Sylvester's law.

 (a) If T∈A(V) is Hermitian, prove that all its characteristic roots are real.

Or

(b) Show that congruence is an equivalence relation,

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) If V is finite-dimensional, prove that there is an isomorphism ψ of V onto \hat{v} , the second dual of V.

Or

- (b) If V is a finite dimensional inner product space, prove that V has an orthonormal set as a basis.
- 17. (a) If A is an algebra with unit element over F, prove that A is isomorphic to a subalgebra of A(V) for some vector space V over F.

Or

(b) If $\lambda_1, \lambda_2, ..., \lambda_k$ in F are distinct characteristic roots of $T \in A(U)$ and if $v_1, v_2, ..., v_k$ are characteristic vectors of T belonging to $\lambda_1, \lambda_2, ..., \lambda_k$ respectively, then prove that $v_1, v_2, ..., v_k$ are linearly independent over F.

Page 6 Code No. : 5377