Code No.: 5371

Sub. Code: ZMAM 23

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023.

Second Semester

Mathematics - Core

ADVANCED CALCULUS

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- The value of $\int_{1}^{2} \sqrt{x} dx$ is
 - (a) $\frac{4\sqrt{2}-2}{5}$ (b) $\frac{4\sqrt{2}-2}{3}$
 - (c) $\frac{4\sqrt{2}-1}{3}$ (d) $\frac{\sqrt{2}-4}{3}$

- The Jacobian of the transformation $T:\begin{cases} u = x \cos y \\ v = x \sin y \end{cases}$ 5.
 - is
 - (a) 0
- (b) y
- (c) x
- If $T:\begin{cases} u = \cos(x + y^2) \\ v = \sin(x + y^2) \end{cases}$ then at (x, y) the Jacobian of
 - Tis

 - (b) $4y\sin(x+y^2)\cos(x+y^2)$
 - (c) $2y\sin(x+y^2)\cos(x+y^2)$
- If F is additive on A, the $F(S_1 \cup S_2)$ is 7.
 - (a) $F(S_1) + F(S_2)$
 - (b) $F(S_1) + F(S_2) + F(S_1 \cap S_2)$
 - (c) $F(S_1) + F(S_2) F(S_1 \cap S_2)$
 - (d) $F(S_1) + F(S_2) 2F(S_1 \cap S_2)$
- The direction of the line through (1, 2, -1) towards (3, 1, 1) is
 - (a) $\left(\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}\right)$

- (c) $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$ (d) $\left(\frac{2}{3}, \frac{1}{3}, \frac{-2}{3}\right)$

Code No.: 5371 Page 3

- Let D be the region between the line y = x and the parabola $y = x^2$. Let $f(x, y) = xy^2$. Then $\iint f$ is
- (b) $\frac{1}{42}$
- (c) $\frac{1}{30}$
- (d) $\frac{1}{40}$
- The image of the line x=0 under the 3. transformation $S: \{v = x - y \text{ is }$
 - (a) u = v
 - (b) the line u+v=0, in the plane w=0
 - (c) u = 0, v = 0, w = 0
 - (d) a circle
- Let T be the linear transformation on \mathbb{R}^2 into \mathbb{R}^2 specified by the matrix $\begin{bmatrix} 2 & -1 \\ -3 & 0 \end{bmatrix}$. The image of the point (1, 2) is
 - (a) (0, 3)
- (b) (3, 0)
- (c) (0, -3)
- (d) (-3, 0)

Page 2

Code No.: 5371

- If V = Ai + Bj + Ck then curl(V) is
 - (a) $(C_2 B_3)i + (A_3 C_1)j + (B_1 A_2)k$
 - (b) $(C_2 B_3)i + (A_2 C_1)j + (B_2 A_1)k$
 - (c) $(C_1 B_1)i + (C_2 B_2)j + (A_3 B_1)k$
 - (d) $(C_2 B_3)i (A_3 C_1)j + (B_1 A_2)k$
- If α is a k form and β any differential form, then $d(\alpha\beta)$ is
 - (a) $(d\alpha)\beta + (-1)^k\alpha(d\beta)$
 - (b) $(d\alpha)\beta + (d\beta)\alpha$
 - (c) $(d\alpha)\beta \alpha(d\beta)$
 - (d) $(-1)^k (d\alpha)\beta + (-1)^k \alpha (d\beta)$

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

11. (a) Let f and g be continuous and bounded on D. Prove that $\iiint_D |f|$ exists and $\iiint_D f \leq \iiint_D |f|$.

(b) Show that for x > 0 $\int_{0}^{\pi/2} \log(\sin^2\theta + x^2\cos^2\theta) d\theta = \pi \log\left(\frac{x+1}{2}\right).$

> Code No.: 5371 Page 4

[P.T.O.]

12. (a) Let
$$T:$$

$$\begin{cases} r = xy \\ s = 2x, S: \\ t = -y \end{cases}$$

$$\begin{cases} u = r - s \\ v = st \end{cases}$$

Calculate the products ST and TS. Verify whether ST = TS or not.

Or

(b) Define the differential of a transformation T compute the differential of

$$T: \begin{cases} u = x + 6y \\ v = 3xy \end{cases} \text{ at } (1, 1)$$
$$w = x^2 - 3y^2$$

13. (a) Discuss the solution of the equations for u and v

$$\begin{cases} x^2 - yu = 0 \\ xy + uv = 0 \end{cases}$$

Or

(b) Let T be of class C' in an open region D and let E be a closed bounded subset of D. Let dT/p_0 be the differential of T at a point $p_0 \in E$. Prove that

$$\begin{split} T\big(p_0 + \Delta p\big) &= T\big(p_0\big) + dT / p_0\big(\Delta p\big) + R\big(\Delta p\big) \quad \text{where} \\ \lim_{\Delta p \to 0} \frac{\left|R\big(\Delta p\right)\right|}{\left|\Delta p\right|} &= 0 \quad \text{uniformly for} \quad p_0 \in E \; . \end{split}$$

Page 5 Code No.: 5371

17. (a) Let L be a linear transformation from R^n into R^m represented by the matrix $\left|a_{ij}\right|$. Prove that there is a constant B such that $\left|L(p)\right| \leq B|p|$ for all points p. Also show that the number B is not the smallest number with this property.

Or

- (b) Let T be differentiable on an open set D and let S be differentiable on an open set containing T(D). Prove that ST is differentiable on D and if $p \in D$ and q = T(p), then $d(ST)_p = \frac{dS}{q}\frac{dT}{p}$.
- 18. (a) Let T be a transformation from R^n into R^n which is of class C' in an open set D, and suppose that $J(p) \neq 0$ for each $p \in D$. Prove that T is locally 1-to-1 in D.

Or

(b) Let T be of class C' on an open set D in n space, taking values in n space. Suppose that $J(p) \neq 0$ for all $p \in D$. Prove that T(D) is an open set.

Page 7 Code No.: 5371

14. (a) If E is a closed bounded subset of Ω at zero volume, prove that T(E) has zero volume.

Or

- (b) If γ_1 and γ_2 are smoothly equivalent curves, prove that $L(\gamma_1) = L(\gamma_2)$.
- 15. (a) If ω is any differential form of class C'', prove that $dd\omega = 0$.

Or

(b) State and prove the divergence theorem for the case of a cube.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) If f is continuous on R, prove that $\iint_R f$ exists.

Or

(b) Let R be the rectangle described by $a \le x \le b$, $c \le y \le d$ and let f be continuous on R. Prove that $\iint_R f = \int_a^b dx \int_c^d f(x, y) dy.$

Page 6 Code No.: 5371

19. (a) Let F be an additive set function defined on G and a.c. Suppose also that F is differentiable everywhere, and uniformly differentiable on compact sets, with the derivative a point function f. Prove that f is continuous everywhere and $F(S) = \iint_S f$ holds for every rectangle S.

۸r

- (b) Define a smooth curve. If γ is a smooth curve whose domain is the interval [a, b]. Prove that γ is rectifiable and $L(\gamma)$ is given by the formula $L(\gamma) = \int_a^b |r'(t)| dt$.
- 20. (a) Prove that $T^*(d\omega) = (d\omega)^* = d(w^*) = dT^*(\omega)$ when (i) ω is a 0-form (ii) ω is any 1-form.

Or

(b) Give a proof of Stoke's theorem by reducing it to an application of Green's Theorem.