(7 pages)	Reg. No. :
	2.08.2.10.1

Code No.: 5369

Sub. Code: ZMAM 21

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023

Second Semester

Mathematics - Core

ALGEBRA - II

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. If R is a commutative ring and $a \in R$, the $aR = \{ar \mid r \in R\}$ is a ————————ideal of R
 - (a) Right ideal
- (b) Left ideal
- (c) Two-sided ideal
- (d) None of the above
- 2. The number of ideals of the ring of rational numbers is ———
 - (a) 2
- (b) 1
- (c) 0
- (d) none of the above

- 8. Let R be a commutative regular ring. Then the J-radical of a ring R is
 - (a) $\{0\}$
- (b) {1}
- (c) R
- (d) none of the above
- A ring R is isomorphic to a subdirect sum of
 ————— if and only if R is without a prime ideal.
 - (a) ideals
- (b) integral domain
- (c) prime ideals
- (d) none of the above
- If R[^]≠ {0} then the annihilator of the set of zero divisors of R is ______
 - (a) R
- (b) {0}
- (c) R^
- (d) none of the above

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) If {0} and R are the only two ideals of the commutative ring R with unit element, then prove that R is a field.

Oı

(b) If U is an ideal of the ring R, then prove that R/U is a ring and is a homomorphic image of R.

- 3. The gcd of 3+4i and 4+3i in J[i] is -
 - (a) 2-i
- (b) 1
- (c) 1 + 2i
- (d) none of the above
- 4. The number of units in the ring of complex numbers is ————
 - (a) 0
- (b) 2
- (c)
- (d) 4
- 5. Which of the following is the unique factorization domain?
 - (a) Z[i]
- (b) $Z(\sqrt{-5})$
- (c) (a) and (b)
- (d) none of the above
- 6. The content of the polynomial $3x^6 + 9x 12$ is
 - (a) 0
- (b) 1
- (c) 3
- (d) none of the above
- 7. Let F[[x]] be the ring of formal power series over a field F. Then rad F[[x]] = ----
 - (a) 0
- (b) 1
- (c) x
- (d) none of the above

Page 2 Code No.: 5369

12. (a) Let R be a Euclidean ring and $a,b \in R$, If $b \neq 0$ is not a unit in R, then prove that d(a) < d(ab).

Or

- (b) Let p be a prime integer and suppose that for some integer c which is relatively prime to p we can find integers x and y such that $x^2 + y^2 = cp$. Then prove that there exists integers a and b such that $p = a^2 + b^2$.
- 13. (a) State and prove the division algorithm.

Or

- (b) Define primitive polynomial and prove that product of two primitive polynomials is a primitive polynomial.
- 14. (a) Let I be an ideal of R. Then prove that $I \subseteq rad R$ if and only if each element of the coset 1+ I has an inverse in R.

Or

(b) For any ring R, prove that the quotient ring R/RadR is without prime radical.

15. (a) An element $a \in R$ is quasi-regular if and only if $a \in I_a$, prove.

Or

(b) Prove that if R is a ring R, R/radR is isomorphic to a subdirect sum of fields.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

 (a) Prove that every integral domain can be imbedded in a field.

Or

(b) Let R and R' be rings and φ: R→R' is a homomorphism of R onto R' with kernel U. Then prove that R' is isomorphic to R/U. Also prove that there is a one-to-one correspondence between the set of ideals of R' and the set of ideals of R which contain U and this correspondence can be achieved by associated with an ideal W' in R' the ideal W in R defined by W={x∈R|φ(x)∈W'}. With W so defined, R/W is isomorphic to R'/W'. Prove.

Page 5 Code No.: 5369

20. (a) Let $I_1, I_2, ... I_n$ be a finite set of ideals of the ring R. If $I_i + I_j = R$ whenever $i \neq j$, then prove that $R / \bigcap I_i \cong \Sigma \oplus \left(\frac{R}{I_i}\right)$.

Or

- (b) If R is a ring for which $R^{u} \neq \{0\}$, then
 - (i) $ann R^{v}$ is a maximal ideal of R
 - (ii) $ann R^{\nu}$ consists of all zero divisors of R, plus zero
 - (iii) Whenever R is without prime radical, R forms a field

17. (a) Define Euclidean ring and prove that J[i] is an Euclidean ring.

Or

- (b) The ideal $A = (a_0)$ is a maximal ideal of the Euclidean ring R if and only if a_0 is a prime element of R.
- 18. (a) State and prove the Eisenstein criterion.

Or

- (b) If R is a unique factorization domain and if p(x) is a primitive polynomial in R[x], then prove that it can be factored in a unique way as the product of irreducible elements in R[x].
- 19. (a) Let I be an ideal of the ring R. Further, assume that the subset $S \subseteq R$ is closed under multiplication and disjoint from I. Then prove that there exists an ideal P which is maximal in the set of ideals which contain I and do not meet S; any such ideal is necessarily prime.

Or

- (b) If I is an ideal of the ring R, then prove:
 - (i) $rad(R/I) \supseteq \frac{radR+I}{I}$ and
 - (ii) Whenever $I \subseteq radR$, rad(R/I) = (radR)/I

Page 6 Code No.: 5369