10			
(6	рa	e	81

Reg.	No.	Estaportura de la contrata del contrata del contrata de la contrata del la contrata de la contra
RCE.	ATO.	Extended to the Action and the Control of the Action and Action an

Code No.: 5364

Sub. Code: ZMAM 11

M.Sc (CBCS) DEGREE EXAMINATION, APRIL 2023.

First Semester

Mathematics - Core

ALGEBRA - I

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A - (10 × 1 = 10 marks)

Answer ALL questions.

Choose the correct answer:

- If G has no nontrivial subgroups, show that G
 must be ______ of prime order.
 - (a) Uncountable
- (b) Finite
- (c) Infinite
- (d) None of these
- 2. Every subgroup of an abelian group is _____
 - (a) right coset
- (b) last coset
- (c) normal
- (d) not normal

- 3. Let G be a group and ϕ an automorphism of G. If $a \in G$ is of order o(a) > 0, then $o(\phi(a)) =$ _____
 - (a) 0
- (b) 1
- (c) o(a)
- (d) on
- 4. The number of automorphisms of a cyclic group of order n is
 - (a) $\varphi(n)$
- (b) n
- (c) n^2
- (d) 1
- Every permutation is a product of ______
 cycles.
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- 6. If $o(G) = p^2$ where p is a prime numbers then G is
 - (a) normal
- (b) left coset
- (c) right coset
- (d) abelian
- 7. The number of p-sylow subgroups in G, for a given prime is of the form ______.
 - (a) 1 + kp
- (b) 1 kp
- (c) kp
- (d) $\frac{1+k}{p}$

Page 2 Code No.: 5364

- 8. If $p^m/o(G)$, p^{m+1} l o(G)then G has a subgroup of order ______.
 - (a) p^2
- (b) p^{m-}
- (c) p^m
- (d) p^{m+1}
- 9. If $\phi \neq 1 \in G$ where G is an abelian group then $\sum_{g \in G} \phi(g) = \underline{\hspace{1cm}}$
 - (a) 1
- (b) 2
- (c) oo
- (d) 0
- 10. If $g_1 \neq g_2$ are in G, G a finite abelian group, then there is a $\phi \in G$ with $\phi(g_1)$ _____ $\phi(g_2)$.
 - (a) =
- (b) ≠
- (c) >
- (d) <

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Show that N is a normal subgroup of G iff $gNg^{-1} = N$ for every $g \in G$.

Or

(b) Suppose G is a group. N a normal subgroup of G; define the mapping ϕ from G to G/N by $\phi(x) = Nx$ for all $x \in G$. Then prove that ϕ is a homomorphism of G onto G/N.

Page 3 Code No.: 5364

12. (a) Show that $J(G) \approx G/Z$, where J(G) is the group of inner automorphisms of G, and Z is the center of G.

Or

- (b) If G is a finite group, and $H \neq G$ is a subgroup of G such that $o(G \mid i \mid H)!$ then Prove that H must contain a nontrivial normal subgroup of G, in particular, G cannot be simple.
- 13. (a) If $o(G) = p^2$ where p is a prime number, then prove that G is abelian.

Or

- (b) Show that Every permutation is the product of its cycles.
- 14. (a) If $p^m/o(G)$, $p^{m+1}Xo(G)$ then show that G has a subgroup of order p^m .

Or

(b) Prove that $n(k) = 1 + p + ... + p^{k-1}$.

Page 4 Code No. : 5364

15. (a) If G and G' are isomorphic abelian groups, then prove that for every integers, G(s), and G'(s) are isomorphic.

Or

(b) Suppose that G is the integral direct product of N_1, \ldots, N_n . Then Prove that for $i \neq j, N_i \cap N_j = (e)$, and if $a \in N_i, b \in N_j$ then ab = ba.

PART C - (5 × 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

16. (a) Show that if φ is a homomorphism of G into G with kernel K, then K is a normal subgroup of G.

Or

- (b) State and prove Cauchy's theorem for Abelian Groups.
- 17. (a) State and prove Cayley's theorem.

Or

(b) Show that if G is a group, then Prove that $\mathcal{A}(G)$ the set of automorphisms of G. is also a group.

Page 5 Code No.: 5364

 (a) Prove that conjugancy is an equivalence relation on G.

Or

- (b) Show that the number of conjugate classes in S_n is p(n), the number of partitions of n.
- 19. (a) State and prove Third part of Sylow's Theorem.

Or

- (b) Let G be a finite group and suppose that G is a subgroup of the finite group M. Suppose further that M has a p-sylow subgroup Q. Then Prove that G has a p-sylow subgroup P. In fact. $P = G \cap xQx^{-1}$ for some $x \in M$.
- (a) Prove that every finite abelian group is the direct product of cyclic groups.

Or

(b) Show that the two abelian groups of order p^n are isomorphic iff they have the same invariants.

Page 6 Code No.: 5364