18	pages)
(O	pagesj

Reg. No. :

Code No.: 5381

Sub. Code: ZMAE 31

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023.

Third Semester

Mathematics

Elective - ALGEBRAIC NUMBER THEORY

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. The linear Diophantine equation ax + by = c has a solution if and only if ______.
 - (a) gcd(a, c)|b
 - (b) $gcd(a, b) \mid c$
 - (c) gcd(c, b)|a
 - (d) $c | \gcd(a, b)$

- 6. If p is prime, then P^* is the
 - (a) sum of all primes that are less than or equal to p
 - (b) product of all primes that are less than or equal to p
 - (c) sum of squares of all primes that are less than or equal to p
 - (d) product of all primes that are greater than or equal to p
- 7. The Sieve of Eratosthenes is used for finding
 - (a) all primes below a given integer
 - (b) all even numbers below a given integer
 - (c) all odd numbers below a given integer
 - (d) all composite numbers below a given integer
- 8. If n is an odd pseudo prime, then $2^n 1$ is
 - (a) pseudo prime
- (b) prime
- (c) irrational
- (d) not pseudo prime
- 9. If p is a prime and a is any integer then $a^p a$ is

Page 3

- (a) a multiple of p^2
- (b) a multiple of p-1
- (c) a multiple of 2p
- (d) a multiple of p

- 2. Which of the following Diophantine equation cannot be solved?
 - (a) 6x + 51y = 22
- (b) 33x + 14y = 115
- (c) 14x + 35y = 93
- (d) 11x + 13y = 21
- 3. Let a and b be integers, not both zero. Then a and b are relatively prime iff there exists integers x and y such that
 - (a) 1+ax+by
- (b) 2 = ax + by
- (c) ab = ax + by
- (d) a-b=ax+by
- 4. The Euclidean algorithm is used for finding the
 - (a) 1 cm of two integers
 - (b) gcd of two integers
 - (c) prime numbers
 - (d) composite numbers
- 5. Two integers a and b, not both of which are zero, are said to be relatively prime if
 - (a) gcd(a, b) = a
- (b) a | b
- (c) gcd(a, b) = 1
- (d) $b \mid a$

Page 2 Code No.: 5381

- 10. If m and n are relatively prime integers then $\varphi(mn) = \underline{\hspace{1cm}}$.
 - (a) $\varphi(m) + \varphi(n)$
- (b) $\varphi(m)/\varphi(n)$
- (c) $\varphi(m) \varphi(n)$
- (d) $\varphi(m)\varphi(n)$

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions by choosing either (a) or (b).

11. (a) Find all solutions in integers of 2x + 3y + 4z = 5.

Or

- (b) Find all solutions in positive integer 15x + 7y = 111.
- 12. (a) Prove that the Diophantine equation $x^4 + x^3 + x^2 + x + 1 = y^2$ has the integral solutions (-1, 1), (0, 1), (3, 11) and no others.

Or

(b) Determine whether the Diophantic equation $x^2 - 5y^2 - 91z^2 = 0$ has a nontrivial integral solution.

13. (a) If we define $r_n = \langle a_0, a_1, ..., a_n \rangle$ for all integers $n \ge 0$, then prove that $r_n = h_n/k_n$.

Or

- (b) Prove that the two distinct simple continued fractions converge to different values.
- 14. (a) Let ξ denote any irrational number. If there is a rational number $\frac{a}{b}$ with $b \ge 1$ such that $\left| \frac{\xi a}{b} \right| < \frac{1}{2b^2}$ then prove that $\frac{a}{b}$ equals one of the convergents of the simple continued fraction expansion of ξ .

Or

- (b) Prove that the product of two primitive polynomial is primitive.
- 15. (a) The norm of a product equal the product of the norms, $N(\alpha\beta) = N(\alpha)N(\beta)\cdot N(\alpha) = 0$ iff $\alpha = 0$. The norm of an integers in $\mathbb{Q}(\sqrt{m})$, then prove that $N(\gamma) = \pm 1$ iff γ is a unit.

Or

(b) Prove that the reciprocal of a unit is a unit. The units of an algebraic number field from a multiplicative group.

Page 5 Code No.: 5381

17. (a) Suppose that $ax^2 + by^2 + cz^2$ factors into linear factors modulo m and also modulo n; that is $ax^2 + by^2 + cz^2 \equiv (\alpha_1 x + \beta_1 y + \gamma_1 z)$ $(\alpha_2 x + \beta_2 y + \gamma_2 z) \pmod{m}$

 $\begin{aligned} \alpha x^2 + b y^2 + c z^2 &\equiv \left(\alpha_3 x + \beta_3 x + \gamma_3 z\right) \\ &\qquad \left(\alpha_4 x + \beta_4 y + \gamma_4 z\right) \big(\mathrm{mod}\, n\big). \end{aligned}$

If (m, n) = 1 then prove that $ax^2 + by^2 + cz^2$ factors into linear factors modulo mn.

Or

- (b) Determine whether the equation $x^2 + 3y^2 + 5z^2 + 2xy + 4yz + 6zx = 0$ has a nontrivial solution.
- 18. (a) Prove that the values r_n defined in $r_n = \langle a_0, a_1, ..., a_n \rangle$ satisfy the infinite chain of inequalities

 $r_0 < r_2 < r_4 < r_6 < \dots < r_7 < r_5 < r_3 < r_1$

Or

(b) If $\langle a_0, a_1, ..., a_j \rangle = \langle b_0, b_1, ..., b_n \rangle$ where these finite continuous fractions are simple, and if $a_j > 1$ and $b_{n>1}$, then prove that j = n and $a_i = b_1$ for i = 0, 1, ..., n.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions by choosing either (a) or (b).

- 16. (a) Let U be an $m \times m$ matrix with integral elements. Then prove that the following are equivalent:
 - (i) U is unimodular;
 - (ii) The inverse matrix U^{-1} exists and has integral elements;
 - (iii) U may be expressed as a product of elementary row matrices. $U = R_g R_{g-1} \dots R_2 R_1;$
 - (iv) U may be expressed as a product of elementary column matrices, $U=C_1C_2...C_{h-1}C_h.$

Or

(b) Find all solutions of the simultaneous $3x + 3z \equiv 1 \pmod{5},$ $4x - y + 5z \equiv 3 \pmod{5}.$

Page 6 Code No.: 5381

19. (a) Prove that the convergents h_n/k_n are successively closer to ξ , that is $\xi - \left| \frac{h_n}{k_n} \right| < \xi - \left| \frac{h_{n-1}}{k_{n-1}} \right|.$

Or

- (b) Prove that the continued fraction expansion of the real quadratic irrational number ξ is purely periodic iff $\xi > 1$ and $-1 < \xi' < 0$, where ξ' denotes the conjugate of ξ .
- 20. (a) Prove that every Euclidean quadratic field has the unique factorization property.

Or

(b) Prove that the fields $Q(\sqrt{m})$ for m = -1, -2, -3, -7, 2, 3 are Euclidean and so have the unique factorization property.