(7 pages) Reg. No.:		2.	The set of all continuous linear transformations of	
			a normed linear space N into R or C according as N is real or complex denoted by N^* is called	
			(a) Banach space of N	
			(b) complement of N	
Mathematics - Core			(c) conjugate space of N	
		3.	(d) Hilbert space of N	
FUNCTIONAL ANALYSIS		0,	The conjugate space of <i>N</i> * is called as ———————————————————————————————————	
(For those who joined in July 2017 onwards)			(a) second (b) dual of N	
Time: Three hours Maximum: 75 marks			(c) third (d) first	
PART A — $(10 \times 1 = 10 \text{ marks})$		4.	The isometric isomorphism $x \to F$ is called	
Answer ALL questions.			of N into N^{**}	
Chaose the correct answer:			(a) Banach (b) Natural imbedding (c) Surjective (d) Injuctive	
1. A complete normed linear space is a —————space.		5.	A space is a complex Banach space the whose norm arises from the inner product.	
(a) Compact (b) Banach			(a) Hilbert (b) Banach	
		6.	(c) Inner product (d) Banach algebra	
(c) Continuous			Two vectors x and y in a Hilbert space H are said to be	
(d) Hilbert			to be if $(x, y) = 0$ (a) orthogonal (b) inverse	
		Line .	(c) complement (d) inverse	
			Page 2 Code No.: 5022	
			- 100 2 Code 110. ; 5022	
	Sea Name (See Sec.)			
7. A ———— se	et in a Hilbert space H is a non		(h) Let M be a closed linear s	
empty subset of H which consists of mutually orthogonal unit vectors.		A	(b) Let M be a closed linear space of a normed linear space N . If the norm of a coset $x + M$ in	
(a) Hilbert (b) Empty		## ***	the quotient space N/M is defined by $ x+M = \inf\{ x+m : m \in M\}$ then prove that	
(c) Orthonormal	(d) Banach		N/M is a normed linear space.	
8. The value of T^{**}	100 T		(a) Prove that if B and B' are Banach spaces and	
(a) <i>T</i>	(b) · T*		if T is a linear transformation of B into B' then T is continuous if and only if its graph is	
(c) T^{-1}	(d) T_1	4	closed.	
			- Or	
9. An operator is if it commutes with its adjoint.			(b) If P is a projection on a Banach space B, and if	
(a) adjoint (b) normal			M and N are its range and null space then prove that M and N are closed linear	
(c) unitary	(d) singular		subspaces of B such that $B = M \oplus N$.	
10. The value of det(I)	_	13.	(a) Prove that if x and y are any two vectors in a	

PART B — $(5 \times 5 = 25 \text{ marks})$

(b) 1

(d) 2

(a) 0

(c) -1

Answer ALL questions, choosing either (a) or (b).

(a) Prove that if N is a normed linear space and x_0 is a nonzero vector in N then there exists a

functional f_0 in N^* such that $f_0(x_0) = ||x_0||$ and $||f_0||=1.$

Or

Page 3 Code No.: 5022

- spaces and B into B'its graph is
 - ce B, and if space then sed linear
- vectors in a Hilbert space H, then $|\langle x, y \rangle| \le ||x|| ||y||$.

Or

- (b) Prove that if M is a closed linear space of a Hilbert Space, then $H = M \oplus M^{\perp}$.
- (a) Prove that if A_1 and A_2 are self adjoint 14. operators on H, then their product A_1A_2 is self adjoint if and only if $A_1A_2 = A_2A_1$.

(b) Prove that if T is an operator on H, for which (Tx, x) = 0 for all x then T = 0.

> Page 4 Code No.: 5022 [P.T.O.]

15. (a) Prove that if T is normal, then x is an eigen vector of T with eigen value λ ⇔ x is an eigen vector of T* with eigen value λ̄.

Oi

(b) If T is normal, then prove that the Mi's are pairwise orthonormal.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

(a) State and prove Hahn banach theorem.

Or

- (b) Let N anad N' be normed spaces and T is a linear transformation of N into N'. Then prove that the following conditions on T are all equivalent.
 - (i) T is continuous.
 - (ii) T is continuous at the origin.
 - (iii) There exists a real number $k \ge 0$ with the property that $||T(x)|| \le k||x||$ for every x in N.
 - (iv) If $S = \{x : ||x|| \le 1\}$ is closed unit sphere in N then its image T(S) is a bounded set in N'.

Page 5 Code No.: 5022

20. (a) Prove that if P is a projection on H with range M and null space N then $M \perp N$ if and only if P is self adjoint and in this case $n = M^{\perp}$.

Or

- (b) (i) Prove that $||N^2|| = ||N||^2$ if N is normal operator on H.
 - (ii) Also prove that if T is an operator on H, then T is normal iff its real and imaginary parts commute.

17. (a) State and prove open mapping theorem.

Or

- (b) If N is a normed linear space then prove that the closed unit sphere S* in N* is a compact Hausdorff space in the weak * topology.
- 18. (a) If T is an operator on a normed linear space N, then prove that its conjugate T^* defined by $[T^*(f)](x) = f(T(x))$ is an operator on N^* and the mapping $T \to T^*$ is an isometric isomorphism of $\mathfrak{B}(N)$ into $\mathfrak{B}(N^*)$ which reverses products and preserves the identity transformation.

Or

- (b) If M is a proper closed linear subspace of a Hubert space H, then prove that there exists a non zero vector z_0 in H such that $z_0 \perp M$.
- 19. (a) Prove that if $\{e_i\}$ is an ortho normal set in a Hilbert space H, and if x is an arbitrary vector in H then $x \sum (x, e_i)e_i \perp e_j$ for each j.

Or

(b) Prove that if H be a Hilbert space and f be an arbitrary functional in H then there exists a unique vector g in H such that f(x) = (x, y).

Page 6 Code No.: 5022