

CENTRE FOR ASTROPHYSICS AND SUPERCOMPUTING

MozGrav

Morphology-dependent Black Hole Mass Scaling Relations

Nandini Sahu

Alister Graham

Benjamin Davis

Background image credit: James Josephides, Alister Graham

Super-Massive Black Holes

$$10^5 M_{\odot} - 10^{10} M_{\odot}$$

Observed Mass Ranges of Compact Objects

~ 140 SMBH From (direct) primary measurement methods:

- Proper Motion
- Stellar Dynamics
- Gas Dynamics
- Megamaser Kinematics
- Direct Imaging

Black Hole Mass Scaling Relations

VS

Black hole mass

 M_{BH}

Galaxy Properties

Bulge mass, Total galaxy mass [Sahu et al. 2019a, Davis et al. (2018, 2019)] Stellar velocity dispersion [Sahu et al. 2019b]

Sérsic index, Half-light radius [Sahu et al. 2020a, in prep.] Internal (3D) mass density [Sahu et al. 2020b, in prep.]

Importance of BH Scaling Relations

- > To estimate the central black hole mass in galaxies where it is difficult to resolve BH SOI.
- To calculate virial f-factors used to convert virial mass to BH mass during reverberation mapping. [Onken et al. 2004; Bennert et al. 2011; Bentz & Katz 2015; Yu et al. 2019]
- Aids simulations, analytical, and theoretical studies trying to study the co-evolution of galaxy properties with central BH and the feedback. [Marconi et al. 2008, Volonteri & Ciotti 2013, Heckman & Best 2014]
- To calculate the black hole mass function: a crucial tool for cosmologists. [e.g. Fukugita & Peebles (2004)]
- ➤ Predictions for the detection of long-wavelength GW signals using PTA and LISA. [Shannon et al. 2015, Sesana et al. 2016]
- Many more!

The Gravitational Wave Spectrum

Black Hole Scaling Relations with the Bulge Stellar Mass and Total Galaxy Stellar Mass.

Sahu et al. (2019a) & Davis et al. (2018, 2019)

Isophotal Modeling using Isofit & Cmodel [Ciambur 2015]

- ➤ Higher Fourier Harmonic Coefficients : To quantify perturbations in each isophote
- \triangleright Eccentric Anomaly (ψ): For uniform sampling of elliptical isophote

NGC 4371: A multi-component ETG with a Bulge, Bar-lens, Bar, Ansae, Disk

Multi-component decomposition of galaxy light using **Profiler** [Ciambur 2016]

The Grid of Galaxy Morphology

Non-Linear M_{BH}-M_{bulge} Relations for ETGs

Green line: best-fit symmetric regression line Dark shaded region: $\pm 1\sigma$ uncertainty on slope and intercept Light shaded region: $\pm 1\sigma$ scatter in the data

Fractional growth in $M_{\rm BH}$ is greater than fractional growth in $M_{\rm *,sph}$

ETGs with (ES, S0) and without (E) a disk

ETGs without disk (E):

- Spheroid dominated
- $M_{*,sph} \sim M_{*,gal}$

ETGs with a disk (ES/S0):

- Bulge and disk both are dominant.
- $\bullet \quad (M_{*,sph} + M_{*,disk}) \sim M_{*,gal}$

This was subsequently observed in a recent simulation by Marshall et al.(2020)

Reason behind offset? —— Smaller bulge mass and size of ES/S0 galaxies

M_{BH} also correlates with total galaxy stellar mass (M_{*,gal}) for ETGs

LTGs: Benjamin Davis et al. (2018, 2019)

ETGs and LTGs

LTGs follow the scaling correlations with slopes ~ twice that of ETGs

- Simulations reporting steeper (at the low-mass end) and bent relations [Cirasuolo et al. 2005; Fontanot et al. 2006; Dubois et al. 2012; Khandai et al. 2012; Bonoli et al. 2014; Neistein & Netzer 2014; Angles-Alcazar et al. 2017]
- M_{BH}(accretion rate) → M_{*} (SFR) → Galaxy Morphology (ETG vs LTG) [Calvi et al. 2018]
- Steeper Relation? As gas becomes available fractional mass gain in M_{BH} > fraction stellar mass gain of the host spheroid [Diamond-Stanic & Rieke 2012; Seymour et al. 2012; LaMassa et al. 2013; Yang et al. 2018]

Black Hole Scaling Relations with the central Stellar Velocity Dispersion

Sahu et al. (2019b)

Broken M_{BH} — Central Stellar Velocity Dispersion (σ) Relation

The bent relation is linked with the evolutionary paths of Sérsic and Core-Sérsic Galaxies

[Ciotti & van Albada 2001, Oser et al. 2012, Shankar et al. 2013, Hilz et al. 2013, Volonteri & Ciotti 2013, Bogdan et al. 2019]

Core- Sérsic:

Dry Mergers

Mild increase in σ with respect to mass

Sérsic:

Gas abundant accretion or wet mergers

Significant increase in σ with respect to mass

Core-Sérsic and Sérsic Galaxies

Core- Sérsic : Dry (gas poor) major mergers

Sérsic: Gas abundant (wet) mergers or gas abundant accretion

Broken M_{BH} — Central Stellar Velocity Dispersion (σ) Relation

The bent relation is linked with the evolutionary paths of Sérsic and Core-Sérsic Galaxies

[Ciotti & van Albada 2001, Oser et al. 2012, Shankar et al. 2013, Hilz et al. 2013, Volonteri & Ciotti 2013, Bogdan et al. 2019]

Core- Sérsic:

Dry Mergers

Mild increase in σ with respect to mass

Sérsic:

Gas abundant accretion or wet mergers

Significant increase in σ with respect to mass

Black Hole Mass Scaling Relations Are Dependent on Galaxy Morphology!

- \clubsuit ETGs and LTGs follow two different M_{BH} - M_{sph} and M_{BH} - M_{gal} relations. M_{BH} correlates with M_{gal} as strongly as with M_{sph} .
- \bullet ETGs with (ES/S0) and without (E) a disk are found offset in the M_{BH}-M_{sph} diagram.
- \bullet Both, M_{BH} - M_{sph} and M_{BH} - M_{gal} relations are non-linear, i.e., the ratios M_{BH}/M_{sph} and M_{BH}/M_{gal} are not constant.
- Sérsic and Core-Sérsic galaxies define two different relations in the M_{BH} - σ and also the L- σ diagrams.

More results!! checkout Sahu et al. (2019a,b) and Davis et al. (2018, 2019)

Stay tuned for M_{BH} –n, M_{BH} –Re, and M_{BH} –spatial density (ρ) relations [Sahu et al. (2020 a, b) in preparation]

Back up slides

Broken L— σ Relation

A break in Faber-Jackson Relation

Sérsic: $L \propto \sigma^{2.44\pm0.18}$ Sérsic: $L \propto \sigma^{2.97\pm0.43}$ Core- Sérsic: $L \propto \sigma^{2.97\pm0.43}$ Core- Sérsic: $L \propto \sigma^{5.16\pm0.53}$ ther studies suggesting double or bent relation (in R and B-bands as well): Schechter (1980) Binney (1982) Farouki et al. (1983) Da

Other studies suggesting double or bent relation (in R and B-bands as well): Schechter (1980), Binney (1982), Farouki et al. (1983), Davies et al. (1983), Held et al. (1992), de Rijcke et al. (2005), Matković & Guzmán (2005), Lauer et al. (2007), Cappellari et al. (2013), Kormendy & Bender (2013), Graham & Soria (2019), etc.

Comparison with Shankar et al. (2016, 2019)

Black Curve for ETGS: Obtained using SDSS data for local galaxies with P(E-S0) > 0.8Brown Curve for Late Spirals: Obtained using SDSS data for local galaxies with P(Scd) > 0.7

Disassembling Galaxy Light

NGC 4371

Profiler [Ciambur (2016)]

$$R_{eq} = \sqrt{(R_{maj} \times R_{min})}$$

Stellar mass-to-light ratio from Meidt et al. (2014)