
Conclusion

• Nineteen participants took part in the initial trial (female = 
11, male = 8). Average age = 21 years (SD = 1.86 years), all 
recruited from a young adults' early intervention service, 
within community mental health WSLHD

• Participants were enrolled in the study for an average of 
92.8 days (SD = 44.30 days). 

• A Random Forest Classifier was superior to a Logistic 
Classifier; we were able to predict clinical deterioration 
with a high degree of specificity (0.96) but a lower degree 
of sensitivity (0.50). Accuracy rate = 0.86 (95% CI 0.75 -
0.94).

• SMS self-reported stress levels (via EMA) did not improve 
the accuracy of the model

• Qualitative data suggests that the clients and clinicians 
identify the benefits of the mHealth device in aiding both 
self-monitoring and clinician-monitoring [4]

• The barrier to utilisation, understandably, is concerns with 
privacy and data misuse [4]
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• Community mental health services with an orientation to 
early intervention strive to intervene at the earliest 
opportunity in the onset of mental illness or relapse.

• However, community-based clinicians remain at a 
disadvantage as they ‘catch up’ with the mental state of 
their clients often after a deterioration in a person’s 
mental state, leading to periods of untreated illness [1,2]

• mHealth (e.g. digital apps and wearables) provide the 
possibility of real time tracking of key psychophysiological 
indices of good mental health such as sleep, arousal and 
activity [3].

• The unWIRED Project integrates a mHealth device into 
clinical care to track and record these indices with the 
aim of recognising signs of early deterioration in young 
adults’ mental health.
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Method

• To assess the effectiveness of integrating a mHealth 
device in the clinical care of young people with a mental 
illness 

• Examine the use of a machine learning approach in 
predicting deterioration in participants using 
psychophysiological data collected by the mHealth 
device. 

Results

• An initial pilot study of the use of the E2 (Empatica) 
device measuring sleep, arousal (electrodermal activity; 
EDA), and level of activity was conducted in young adults 
referred to a community mental health service.

• Labels for participants’ functioning (‘stable’, ‘ambivalent’ 
or ‘distress’) were extracted from medical records and 
matched with electrophysiological data.  

• Ecological Momentary Assessment (EMA) in the form of 
replies to randomly sent text messages to participants 
asking them to rate their stress levels on a 1-10 scale 
were also included.

• Data was examined using machine learning to predict 
significant changes in mental state. 

• Qualitative data from participants and clinician interviews 
assessed acceptability of the device.

• We have been able to establish the acceptability of 
wearing a mHealth device over an extended period

• While reasonable accuracy was achieved it did not reach 
an acceptable level for clinical use. 

• EMA vis SMS self-reporting of stress does appear 
necessary in monitoring patient deterioration when other 
physophysiological and clinical data is available

• A subsequent Randomised Controlled Trial (N = 80) is 
ongoing in 2022 with the aim to further strengthen these 
findings. 
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