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BACKGROUND AIMS METHODS RESULTS

The expenditures of healthcare Apparently, healthcare Six machine learning Results show that the
services associated with unplanned stakeholders do not have a strong applications are employed in CatBoost had the best
readmissions are enormous. data science background. Doctors predicting 30-day performance with a higher
Recognising the reasons that consider the cause of a prognosis readmission after area under the receiver
contribute to readmission and rather than the binary outcome hospitalisation for diabetic operating characteristic curve
identifying at-risk patients are the from the machine learning patients. This study also than other models. Prior
essentl.al ;teps to.r.ec.juc?e suc.:h methods. Most of the previous utilised the white-box readmission, discharged at
.readmlsslons. Ar‘uﬂcgl intelligence work presented predictions, but machine learning framework home, the number of
Is changing the practice of . they did not explain the models. by exploring Shapley Additive emergencies and age were
health.care. It has e”?b'eo! medical Treating these models as “black Explanations (SHAP) and strong predictors. To
pracljcltloners to prowdeglgh— boxes” diminishes confidence in Local Interpretable Model- demonstrated explainability
qua |ty-tr.eatment.s tg r,e dce , their predictions. This study aims agnostic Explanations (LIME). at the individual level, we
readmissions. While it is essential : : : :

, . to report high-performing Interpreted the relative
to employ such solutions, making L . . . :

: predictive models for readmission variable influence of patient
them transparent to medical . :
along with transparent observations.

experts is more critical. , ,
interpretations.
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According to the findings from The findings could be helpful

SHAP Values, we found the In medical practice and
‘Number of inpatient visits’ . ® provide valuable

variable has the greatest —> —> — — recommendations to
Impact on readmission in the . o stakeholders for minimising

CatBoost model. readmission and reducing
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LIME is applied to the models future.

created and how predictions

are made at the individual e
. 0.75 Area Under the Curve number_inpatient " [
observation level. For example, _ R
discharge_disposition_id_1 *- -
a patlent had been number_emergency *——-
hospitalised six times before 05 age o
this stay, and this patient was diag_1 . %
. ischarge_disposition_i " — g
discharged to home and was LIME  SHap  Cccheroedepostiontdzs ' 5
0.25 number_diagnoses +-- @
between the ages of 40 and Best Model e in hospital -
50. The.r.nodel predicted the J CatBoost insulin -:
probability of 30-day 0 diag_3
1 1 1 o) ‘\0(\ @Q/ QJ%& Oé\ Oé o& Sum of 15 other features +——
readmission is 78%. The model & & & F
had id d th h [ Q\Q/Qé &\O GO@ R «’Z}% 10 -05 00 05 10 15 20 row
. 2 -1. =i . i | " !
a consiaere t att € siX (%%“\(/ N Q»fbo \%Q’o SHAP value (impact on model output)
. . . o X0
times of inpatient has a ~ ¢

positive influence on the

prediction with a coefficient of

0.23. However, other most °
Important features such as
being discharged to home and
the number of emergencies
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