

Radiographic Annotation Accuracy – The "Good **Doctor" Performance Competing with Al**

Yuan Chai, A. Mounir Boudali, John Farey, William L. Walter Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, University of Sydney, St. Leonards, NSW 2064, Australia

Bridging Medical Research and Health

Introduction

Personalized surgeries are planned from patient-specific anatomical landmarks. Due to differences in anatomies and radiographic qualities, the regions of landmark annotations cannot be quantified. In contrast, recent advances in machine learning landmarking techniques present its accuracy in heatmap format representing the landmark size at different confidence levels. However, the measurement accuracies can only be analyzed at a parameter dimension regardless of the heatmap information. There is a demand for quantifying landmark sizes under clinical practice to be comparable with Al.

Results

result shows that all the Our excellent had measurements correlation reliabilities (intraclass coefficients > 0.9), yet 84 landmarks (6.09%) were identified as wrong from the secondary review. The landmark clouds point present different landmark of sizes annotation strategies at different probability levels (Fig. 2 and 3), which are comparable to the machine learning outcomes. The outcome also presents the maximum impact on corresponding parameters, the landmarks' regional shapes, and observer preferences. With 95% data points, the clinical reference of measuring pelvic tilt can reach a maximum disagreement of 6.9° -11.8° (Fig. 2).

Figure 1. Diagram of calculating the coordinate of each landmark annotation.

Methods

The cloud diameter of each Figure 2. landmark (calculation method excluding wrong landmarks) and its parameter-wise maximum impact at 50%, 75%, and 95% data points.

Discussion and Conclusion

The landmarks with excellent reliability still have a chance (at least 6.09% in our case) of making wrong landmark decisions. Identifying skeletal contours is at least 24.64% more accurate than estimating landmark locations (Fig. 3, hat distributions are estimated). The landmark at a clear skeletal contour is more likely to generate systematic errors. Due to landmark ambiguity, a very careful surgeon measuring PT could make a maximum 11.8° random difference in 95% of cases, serving as a "good doctor benchmark" to qualify good landmarking techniques.

Measuring pelvic tilt (PT) as an example, this study recruited 115 sagittal pelvic radiographs for the measurement of two PT definitions. We proposed a method to unify the scale of images that allows horizontal comparisons of landmarks and calculated the maximum possible error using a density vector (Fig. 1). Traditional descriptive statistics were also applied

Figure 3. Scaled data point distribution of each landmark.

Contact

Yuan Chai PhD.

Sydney Musculoskeletal Health, Kolling Institute Faculty of Medicine and Health, University of Sydney

St. Leonards, NSW 2064, Australia

E-mail: yuan.chai@sydney.edu.au