Contract Review
By Issue date
Quit 11/4/2025

Overview

The following is a review of MegaweaponShop, a payment ingestion contract powering the
Megaweapon game on Abstract.

Contracts in scope for this review include:
® contracts/MegaweaponShop.sol

This review is based on SHA 8ab0el6fd277f8a77aa2da2ad05428f24c9760ae, and aims
to identify security vulnerabilities, opportunities for gas optimization, and general best-practice
recommendations with regard to the contracts in scope. The review should not be considered
an endorsement of the project, nor is it a guarantee of security.

Findings

G-01: Product struct is not optimized

Severity: Gas Optimization

Product uses three storage slots but could be reduced to one. The struct contains two uint256
values for priceInWei and credits plus a bool exists flag. exists is redundant because
product existence can be inferred by checking whether priceInWei is greater than zero,
which is already enforced as a requirement in addProduct. Recommend restructuring
Product as uint128 priceInWei and uint128 credits, removing exists entirely, and
checking priceInWei > 0 to determine product existence.

G-02: ReentrancyGuard is unnecessary

Severity: Gas Optimization

The contract uses ReentrancyGuard on both purchase and withdraw, but neither function
is vulnerable to reentrancy attacks. purchase follows a checks-only pattern with no state
changes or external calls, making reentrancy impossible. The withdraw function is owner gated
and transfers the entire contract balance in a single operation with no state changes afterward,
eliminating any reentrancy risk even if the owner were a malicious contract. Recommend
removing the ReentrancyGuard inheritance and nonReentrant modifiers from both
functions.

G-03: Use Solady for free optimizations

Severity: Gas Optimization

MegaweaponShop inherits from OpenZeppelin’s Ownable and ReentrancyGuard. Consider
using Solady, which has adaptations of both that are more gas efficient.



L-01: Purchase function provides no onchain proof of credit ownership

Severity: Low

The purchase function accepts ETH payments but only emits an event without updating any
state to track user balances or purchase history. Recommend adding an on-chain mapping such
as mapping (address => mapping(uint256 => uint256)) public
userPurchases to track the number of times each user has purchased each product type.

Summary

MegaweaponShop implements a straightforward payment gateway for purchasing in-game
credits using ETH on Abstract. Users send ETH to purchase credits in batches labeled as
“products” as defined by the owner, with the contract emitting events consumed by an off-chain
backend service to credit user accounts in the game system.

The security posture is sound with explicit validation of product existence and payment
amounts, and proper access control limiting administrative functions to the owner.

The system operates with a centralized trust model where the owner has full administrative
control over product offerings and fund withdrawal. Users must trust the backend service to
correctly monitor events and credit their accounts, as the contract maintains no onchain record
of purchases beyond event logs.

Backend Integration Note:

The deposit-api service contains an issue where credit values are converted to a Javascript
Number rather than BigInt or String, creating potential precision loss for values exceeding
MAX SAFE INTEGER. Recommend updating the backend to use standard Solidity-to-JavaScript
patterns that preserve precision for large numbers: represent the value using a Bigint or String
within JS, and a String in the db.

Additionally, the contract is designed to support future product types including season passes
(where credits would be set to 0 and productType identifies the access tier), but the current
backend implementation only extracts and processes the credits field. Before offering non-credit
products like season passes, the backend will need to be adjusted to parse productType from
events and route to appropriate handlers for time-based access grants versus in-game currency
credits.

Note on access control:

The contract uses OpenZeppelin’s Ownable to manage access control, applying onlyOwner
to the addProduct, removeProduct, and withdraw functions. | recommend switching to
OwnableRoles (both OZ and Solady have versions of this) and granting a backend signer with
the ability to add/remove products, but leaving fund withdrawal as owner only.



The contract is production-ready for its intended use case as a payment gateway for a trusted
gaming system. The contract's simplicity and focused scope limits attack surface, with the

primary considerations being the trust assumptions around event monitoring and centralized
owner control.



