
TT -like Deformations of
Supersymmetric Quantum Field
Theories and the Design of New

Tensor Algebra Software

Jesse Woods

Under the supervision of
Dr Gabriele Tartaglino Mazzucchelli

A thesis submitted to the University of Queensland
in partial fulfilment of the degree of Bachelor of Science with Honours

School of Mathematics and Physics
June 2023

ii

© Jesse Woods, 2023.

Typeset in LATEX 2ε.

iii

The work presented in this Thesis is, to the best of my
knowledge and belief original, except as acknowledged in
the text, and has not been submitted either in whole or
in part, for a degree at this or any other university.

Jesse Woods

iv

“The hardest things are usually the best. If it’s easy, leave it to somebody else.”

— Tom Platz

“My name is Jeff.”

— Channing Tatum

Abstract

One of the main open problems in theoretical physics is determining the high-energy be-
haviour of the Standard Model and General Relativity, and how they fit together. The
Standard Model - a Quantum Field Theory (QFT) at heart - is perhaps the most successful
and stringently tested scientific theory of nature, describing fundamental particles and their
interactions in terms of quantised excitations of fields that span spacetime. General Rela-
tivity describes gravity in a natural geometric way - however it is unknown how this theory
behaves at the quantum level. A better understanding of high energy physics will allow us
to see how, and to what, these two theories converge.

Recently, an operator known as T T̄ , constructed from the stress-energy tensor, has been
demonstrated to create a unique flow through the space of 2D QFTs by deforming the
Lagrangian of the theory [1]. This can be used to understand non-trivial interacting field
theories by deforming solvable (e.g. free) models. Remarkably, this operator is solvable; it
possesses properties that ensure quantities like the spectrum and S−matrix can be computed
exactly starting from the undeformed theory. Given that all meaningful theories possess
a stress-energy tensor, one can universally construct a composite (super)current-squared
operator from its components, analogously to T T̄ .

One of the most powerful concepts for discovering new physics is symmetry. Imposing
additional symmetries on a theory may yield enough constraints to make the theory solvable,
or to demonstrate interesting new properties. There is only one possible way to impose
additional, non-trivial, physical, symmetries on spacetime: supersymmetry (SUSY). This
symmetry relates bosonic (integer spin) states to fermionic (half-integer spin) states by
extending the Poincaré symmetry group by anti-commuting “supercharges”. Supersymmetry
is considered by some to be part of the resolution to the issues between the Standard Model
of Particle Physics, and General Relativity (GR), and is an important component of string
theory.

This naturally raises the question as to how T T̄ behaves with supersymmetric theories.
For theories possessing SUSY, the stress-energy tensor is generalised to a set of supercur-
rents, containing the stress-energy tensor and possibly other currents [2]. One can then
create a supercurrent-squared operator, which should reduce to the T T̄ operator when su-
persymmetry is truncated. This allows for T T̄ to be extended to supersymmetric theories.

Currently, the supercurrent-squared operator has been show to be equivalent to TT̄ for
2D N = (0, 1), N = (1, 1), N = (0, 2) and N = (2, 2) theories [3] [4] [5] [6]. We aim to
extend these results to the case of 2D N = (0, 4) and N = (4, 4) supersymmetry and show
that the extension is natural, which is a novel result. In the process of doing so, we have
studied the T T̄ and T T̄−like terms of the aforementioned SUSY theories, and 4D N = 2

v

vi Abstract

due to its relationship to 2D N = (4, 4) [7] supersymmetry whose supercurrent is poorly
understood.

For theories with greater numbers of supercharges, the algebraic manipulations needed to
determine the supercurrent multiplet structure become increasingly complex. Motivated by
this, we have also created a general-purpose tensor algebra software package in Julia in order
to perform algebraic computations. Given its native ability to handle covariant derivatives
and graded structures, this software will serve as a powerful tool for those studying both
spacetime or supersymmetric structures.

Acknowledgements

I would like to thank my supervisor Dr. Gabriele Tartaglino-Mazzucchelli not only for
supervising this thesis, but also investing significant time in me for many smaller projects
over the past few years. He has allowed me to learn much more throughout my degree than
what is taught in just standard courses alone, and has provided me with the opportunity to
pursue my curiosities. I have continued to learn more about supersymmetry, supergravity,
TT̄, and quantum field theories over the course of this thesis, and now find the possibilities
associated with TT̄ absolutely fascinating.

I’d also like to thank everyone who has been a student under Gabriele alongside me over
the years; Joey, Tamera, Liam, Greg, Saurish, William, Jessica, Zejun, Christian, and Cian.
It was always great to hear about what people were working on in their own projects, and
inspired me to want to learn more.

The past year would have been very difficult without the support of my friends. Thanks
Huddo pour les yarns et scrans, Hugo for the sound-on snaps, Violeta for always knowing
what to say, Chris for things that no one would believe me if I said (except maybe Karl),
Will for always checking in on me, and Jaden and Lara for literally everything.

Thanks also to Trent, Lachy, and Jai for all of the cuddles.

vii

viii Acknowledgements

Contents

Abstract v

Acknowledgements vii

List of Figures xiii

1 Introduction 1

2 Review of TT̄ and Supersymmetry 11
2.1 Construction of the TT̄ Operator . 12
2.2 TT̄ Examples . 16
2.3 Supersymmetry and Superspace . 18

2.3.1 Supersymmetry and the Superpoincaré Algebra 18
2.3.2 Superspace . 20
2.3.3 Extended Supersymmetry, Dimensional Dependancy of Representa-

tions, and Superspace Parametrisation 22
2.4 Lightcone Coordinates . 22
2.5 TT̄ and Supersymmetry . 23
2.6 4D TT̄-like Deformations . 25

3 Design and Usage of the Tensor Algebra Software 29
3.1 Basics . 30

3.1.1 Setup . 30
3.1.2 IndexSet . 30
3.1.3 Index . 31
3.1.4 Coordinate . 31
3.1.5 Tensor . 32
3.1.6 TensorTerm . 33
3.1.7 TensorExpression . 33
3.1.8 Operators . 34
3.1.9 Typing Hierarchy . 35

3.2 Useful Functions and Objects . 37
3.2.1 Tensor Appension (×) . 37
3.2.2 Metric . 37
3.2.3 KroneckerDelta . 38

ix

x Contents

3.2.4 EpsilonTensor . 38
3.2.5 rename_dummies() . 39
3.2.6 pop_metric() . 39
3.2.7 Weights . 39
3.2.8 sort() . 40
3.2.9 sort_symmetric() . 40
3.2.10 simplify() . 40

3.3 Performing Derivatives . 41
3.3.1 Derivative . 41
3.3.2 Derivative Action . 41
3.3.3 product_rule() . 42
3.3.4 Derivative Application . 42
3.3.5 Covariant Derivatives . 43

3.4 Pattern Matching and Replacements . 44
3.4.1 Usage . 44
3.4.2 Explanation of the Algorithm . 45

3.5 Lightcone Coordinates . 47
3.6 Superspace . 48

4 Construction of TT̄ and TT̄-like Terms for Conformal Theories 49
4.1 General Approach and Procedure . 49
4.2 2D N = (0, 2) Supersymmetry . 50
4.3 2D N = (2, 2) Supersymmetry . 52
4.4 4D N = 2 Supersymmetry . 53
4.5 2D N = (0, 4) Supersymmetry . 56
4.6 2D N=(4,4) Supersymmetry . 58

5 Construction of TT̄ and TT̄-like Terms for Non-conformal Theories 61
5.1 General Approach and Procedure . 61
5.2 2D N = (0, 2) Supersymmetry . 62
5.3 2D N = (0, 4) Supersymmetry . 65

5.3.1 Sufficient Conditions . 69

6 Conclusion 71

A Notation and Convention 73
A.1 2D Notation and Conventions . 73

A.1.1 Lightcone Conventions . 73
A.1.2 N = (0, 2) Conventions . 73
A.1.3 N = (2, 2) Conventions . 74
A.1.4 N = (0, 4) Conventions . 75
A.1.5 N = (4, 4) Conventions . 75

A.2 4D Notation and Conventions . 75

Contents xi

B Example Code Usage 79
B.1 4D N = 2 Supercurrent Code . 79

References 87

xii Contents

List of Figures

1.1 Special relativistic 2D spacetime structure. Here, the red lines represent null,
or light-like, curves, which bound an observer’s future and past light cones
(grey). The observer cannot be effected by events outside this cone, as this
would require faster than light travel. Lorentz transformations φ move events
along the black hyperbolic trajectories. Inside the cone, events are time-like
- their time ordering cannot be changed by Lorentz transformations. Outside
the cone, events are space-like and cannot be causally related. Indeed, under
Lorentz transformations, points on the space-like curve can have their time-
ordering reversed. Source: [8]. 2

1.2 The central image has had all of its high frequency Fourier modes removed.
How does one “flow to the UV” and re-add the high frequency modes in a
meaningful way? There are (in QFTs, infinitely) many operators that can
re-add high energy modes, but in general the result may be meaningless.
Original image found at [9]. 8

3.1 Type Hierarchy. Arrows denote inheritance. Cyan types cannot be extended.
Blue types are abstract types and can be extended. All types extend the red
TensorSuperType . 36

xiii

xiv List of Figures

1
Introduction

Quantum Field Theory (QFT) is perhaps the most successful scientific theory of nature.
Born out of the necessity to make Quantum Mechanics compatible with Einstein’s theory
of Special Relativity, it describes fundamental particles and their interactions in terms of
quantised excitations of fields that span spacetime. Our current best theory of physics,
the Standard Model of Particle Physics (SM), is at heart a QFT. When combined with
supersymmetry (SUSY), such theories offer not only a promising avenue for the unification
of the SM with Einstein’s General Relativity theory (GR) of gravity - an open problem
in physics, but a rich background for studying mathematics like representation theory. In
general, QFTs are incredibly difficult to solve, and thus developing new mathematical tools,
and learning how to exploit known tools, are at the forefront of theoretical physics research.

In quantum mechanics, a system is described by a (possibly infinite) set of vectors that
span a Hilbert space. A basis may be chosen such that basis vectors correspond to a physical
energy level state (eigenstate), and linear combinations (superpositions) of these vectors can
be taken to describe the full state (wavefunction) of a system. So-called “ladder” operators
can be used to map one vector to another, simulating the transition between two energy
eigenstates induced by exciting the system with a quanta of energy. Hermitian operators
then model observables (physical quantities like position, momentum, energy, spin, etc), with
(real) eigenvalues corresponding to the possible values of the observable. Despite its various
successes, quantum mechanics breaks in the special relativistic limit. In Special Relativity,
space and time are treated on equal footing. In particular, it imposes a “universal speed
limit”, the speed of light, c, of which nothing can travel faster. Combined with the Lorentz
group symmetry required to ensure that physics behaves the same in all inertial reference
frames, i.e. the principle that physics should be independent of observers’ coordinate sys-
tems, this imposes a non-Euclidean spacetime structure. This gives rise to the notion of a
“lightcone”, which constrains the region of spacetime one can influence without violating
faster-than-light travel, implying a causal spacetime structure.

1

2 Introduction

Figure 1.1: Special relativistic 2D spacetime structure. Here, the red lines represent null, or
light-like, curves, which bound an observer’s future and past light cones (grey).
The observer cannot be effected by events outside this cone, as this would require
faster than light travel. Lorentz transformations φ move events along the black
hyperbolic trajectories. Inside the cone, events are time-like - their time ordering
cannot be changed by Lorentz transformations. Outside the cone, events are space-
like and cannot be causally related. Indeed, under Lorentz transformations, points
on the space-like curve can have their time-ordering reversed. Source: [8].

However, one can compute the amplitude of a quantum-mechanical free particle to prop-
agate outside the lightcone, starting from x0 = (t, x̄0) = (0, 0, 0, 0) (a position eigenstate).
This calculation is nontrivial and requires contour integration over the complex plane, but
yields [10]:

A = 〈x|e−iĤt|x0〉 =
∫
d3p

1

(2π)3
eip·x−iEpt ∝ e−m|x|. (1.1)

This is evidently a non-zero amplitude even for large x - a particle can potentially propagate
outside of it’s lightcone. This means that single-particle quantum mechanics is incompatible
with special relativity, and produces a violation of causality. To remedy this, we can instead
consider such a particle as an excitation of a more fundamental, underlying field object.
Classically, a field is a function that assigns to each spacetime point a quantity, like a scalar
or a vector. In the quantisation of a classical system, we assign to each degree of freedom
(position, momentum) an operator. As a field consists of infinitely many degrees of freedom,
we consider the quantised field to be operator-valued. Then one imposes that at spacelike
separations, the field operators commute, meaning that two measurements of the field at
these spacetime coordinates are entirely independent. This preserves the causal structure of
the theory.

3

In order to model the physics of such a field, or a set of many fields {Xi} and their
interactions, the Lagrangian formalism is most convenient. The procedure is analogous to
classical mechanics. By imposing our axiomatic constraints, like invariance under Lorentz
transformations, the set of possible terms that can be included in this Lagrangian L is highly
selective. In fact, the Lagrangian is constrained to contain (for the most part) only terms
proportional to products of fields and their first derivatives. This Lagrangian can then be
integrated over spacetime to obtain the action S,

S =

∫
d4xL(X1, ∂µX1, X2, ∂µX2, ...), (1.2)

on which the principle of least action can be imposed, allowing for the extraction of the
equations of motion of the fields via the Euler-Lagrange equation. These fields can come in
many different varieties, indeed:

• Real scalar fields, usually denoted by φ, which are used to model chargeless spin-0
(bosonic) particles, like the Higgs Boson,

• Complex scalar fields, usually denoted by ϕ and ϕ†, which are charged particles and
anti-particles,

• Vector fields, denoted Aµ, which describe force carrying bosonic particles with spin-1,
like the photon,

• Spinor fields, often denoted by ψ and ψ̄, describing charged spin-1/2 fermions, like
electrons and positrons,

• Tensor fields, which describe particles of higher spin, like the graviton.

These field building blocks can then be used to construct a plethora of QFTs by including
different fields and interactions. This framework is exceptionally important and has been
used to describe a variety of physical phenomena like superconductors, many body quantum
systems, and of course, the Standard Model [10].

However, most QFTs are incredibly difficult to solve to make physical predictions. Often
sophisticated mathematical or computational machinery is required to extract results from
the theory. In most scenarios, perturbation expansions of the theory must be performed
in order to compute meaningful quantities. Indeed, one common quantity of interest is the
S-matrix, which describes the amplitude for a quantum field in some initial state |p〉, to
“scatter” to some other final state |q〉 [10],

A = 〈q|Ŝ|p〉 = 〈q|T [ei
∫
d4xĤI(x)]|p〉 , (1.3)

where T is the time-ordered product, and ĤI(x) is the interaction Hamiltonian density. One
must then Dyson-expand this evolution operator in order to compute it, necessitating the
calculation of infinitely many terms in order to solve exactly. As a concrete example, consider
the interacting real scalar φ4 theory in 4 spacetime dimensions:

L =
1

2
[∂µφ(x)]

2 − m2

2
φ(x)2 − λ

4!
φ(x)4, (1.4)

4 Introduction

where λ is the strength of the interaction. The free part of the theory is given by the kinetic
and mass terms, 1

2
[∂µφ(x)]

2 and m2

2
φ(x)2, that can be quantised quite straightforwardly.

Using Hamilton’s equations, one then has ĤI = λ
4!
φ(x)4. Then, expanding the expression

for the S-matrix, one obtains

Ŝ = T
[
exp

(
− i

∫
d4xĤI(x)

)]
(1.5)

= T
[
1− i

∫
d4x0ĤI(x0) +

(−i)2

2!

∫
d4x1d

4x2ĤI(x1)ĤI(x2) +O(Ĥ3
I)
]
. (1.6)

= T
[
1− iλ

4!

∫
d4x0φ(x0)

4 +
(−iλ)2

2! (4!)2

∫
d4x1d

4x2φ(x1)
4φ(x2)

4 +O(Ĥ3
I)
]

(1.7)

Then, one can compute the amplitude A = A(0)+A(1)+A(2)+ ... as a sum of terms in powers
of λ. Clearly, A(0) = 〈q|T [1]|p〉 = 〈q|p〉 is simply the overlap of the states |p〉 and |q〉, with
no interactions occurring. For the first order term A(1), one has

A(1) = 〈q|T [−iλ
4!

∫
d4x0φ(x0)

4]|p〉 = −iλ
4!

∫
d4x 〈0|aqT [φ(x)φ(x)φ(x)φ(x)]a†p|0〉 (1.8)

In order to evaluate this vacuum expectation value, Wick’s theorem is employed to turn this
time-ordered expression into a sum over all possible “contractions” and “normal-orderings”
of the operators inside the expectation expression, in effect commuting all the annihilation
operators to the right. Such normal-ordered operators annihilate the vacuum, leaving only
fully contracted terms, which are simple products of vacuum expectation values. Indeed,
after applying Wick’s theorem, the integrand will contain a sum of contraction terms of the
form

〈0| aqφ(x)φ(x)φ(x)φ(x)a†p |0〉 = 〈0|Taqφ(x)|0〉 〈0|Tφ(x)φ(x)|0〉 〈0|Tφ(x)a†p|0〉 (1.9)

=
eiq·x

(2π)3/2(2Eq)1/2
∆(x− x)

e−ip·x

(2π)3/2(2Ep)1/2
, (1.10)

over which the integral can be relatively easily computed. Here, ∆(x− y) is the propagator
Green’s function for the theory,

∆(x− y) =

∫
d4k

(2π)4
ieik·(x−y)

k2 −m2 + iε
. (1.11)

These vacuum expectation values are all easily computed from the field expansion of
the operators. Each of these contraction terms represents a possible physical process of
the field that is allowed by the theory. For example, the above amplitude describes a φ
particle progating with momentum p, producing another “virtual” φ particle which interacts
and annihilates (a so-called “self-energy” interaction), before continuing on its way with
momentum q. This can be represented graphically by the Feynman diagram seen in (1.12)

Here, the internal and external lines and vertices represent instructions for computing
the amplitude, which are dependent on the theory. It is often more convenient to work in

5

→ p → q = −iλ
4!

∫
d4x

eiq·x

(2π)3/2(2Eq)1/2

∫
d4k

(2π)4
ieik·(x−y)

k2 −m2 + iε

e−ip·x

(2π)3/2(2Ep)1/2

(1.12)

→ p → q = (2π)4δ(4)(q − p)
(−iλ)
2

∫
d4k

(2π)4
i

k2 −m2 + iε
(1.13)

momentum space. Thus, after computing the Fourier transform of each vacuum expectation
value, this process thus has the amplitude seen in (1.13).

Note, however, that this integral is divergent. This infinity is unphysical. Recall that
these amplitudes arise from part of the perturbative expansion of the S matrix, which is a
unitary operator. Thus, the exact scattering amplitude should be finite, as the particle states
are themselves elements of a Hilbert space. Thus, this infinity is residual from perturbation
theory. This is problematic and must be remedied in order to make physical predictions
from the perturbation theory. Such divergences occur in many interacting quantum field
theories and a procedure is needed in each case to rectify them. Note that the particle states
that we consider here (including the vacuum |0〉) were eigenstates of the free Hamiltonian.
For the interacting theory, the vacuum must instead be an eigenstate of the full interacting
Hamiltonian, (H0 +HI) |Ω〉 = 0. Indeed, one would expect that modifying the Hamiltonian
by adding an interaction term would completely change the spectrum. Thus, the field oper-
ators φ̂(x), which were constructed to create single-particle states in the free theory, may no
longer create a single-particle state in the interacting theory [10]. This in turn also affects
the propagator. It is thus of no surprise that accounting for these changes is necessary in
order to gain meaningful results from perturbation theory.

One way to remove these divergences is to impose an abritary cutoff momentum for
the theory. In reality, we expect our current theories like the Standard Model to only
be an “effective” theory, suitable for low energies only. Thus, this cutoff is not entirely

6 Introduction

unreasonable. It does, however, pose issues quantum mechanically as unitarity is violated
[11]. There do fortunately exist methods for removing this momentum cutoff entirely. This
framework is called renormalisation of the theory, and comes in a few varieties depending on
the theory. In essence, divergent terms are absorbed in the masses, field normalisations, and
couplings of the theory by adding “counterterms” to the Lagrangian. These counterterms
are local (depending on a single spacetime point) operators that shift the “constants” of the
theory. This has the effect of making these parameters energy, or scale, dependent. The
evolution of these constants can be described by the β−function - in essence, a flow equation
in theory space [12].

A theory where only a finite number of counterterms are needed is called renormalisable
[10]. As the presence of divergences depends on the presence of particular terms, it is possible
to classify terms of the Lagrangian pertaining to their renormalisability. By dimensional
analysis, one can observe the exponent of the units of momentum, or mass, in the both
the operators and couplings of the Lagrangian. The value of this exponent is known as the
mass dimension, denoted by [·]. Note that each term in the Lagrangian must have total
mass dimension d, where d is the spacetime dimension, in order for the action to be unitless
when the Lagrangian is integrated [12]. Indeed, [x] = −1 as [m] = [E] (E = mc2 in units
where c, h̄ = 1), and E = h̄ω = h/t so [t] = −1, and thus [x] = −1 since ∆x = c∆t for a
spacetime interval. Thus, [dxd] = −d. For example, in our φ4 theory, [m] = 1, obviously,
so for the term [−m2

2
φ(x)2] = d = 4, it must be so that [φ(x)] = 1. We will denote the

mass dimension of the operators as ∆. For example, classically φ(x)2 has ∆ = 2. Then the
following observations have been made:

• If the operator has ∆ < d (equivalent to the coupling having positive mass dimension),
then the theory is super-renormalisable: there are only a finite number of divergent di-
agrams, proportional to the number of types of interaction vertices in the theory. Such
operators are known as relevant operators. As the coupling is of positive mass dimen-
sion, one can compute that this induces a momentum dependance in the propagators
and vertices that render them insignificant at high energies, and significant at low
energies. We thus say that the operator generates a “flow towards the infrared” (low
energy) scale - the renormalised coupling constants will grow as the energy decreases
(length increases). The term “relevant” corresponds to the fact that these effects will
be tangible in the low energy regime in which we conduct experiments.

• If the operator has ∆ = d (equivalent to the coupling being unitless), then the theory
is renormalisable: there are only a finite number of divergent diagrams for each order
of perturbation theory, though divergences occur at all orders of perturbation theory.
However, as the diagrams have a recursive structure, they can be corrected with a
finite set of counterterms. Such operators are known as marginal operators. Since
the coupling constants have mass dimension zero, they are unaffected by the energy
scale. We say that such theories are fixed points of the renormalisation flow. Note that
some quantum effects can break this scale invariance and this type of operator can be
further classified as exactly marginal (leading to conformal field theories); marginally
relevant (quantum relevant, according to the previous classification, though classically
marginal); and marginally irrelevant (classically marginal but such that they flow to

7

zero in the infra-red, see next).

• If the operator has ∆ > d (equivalent to the coupling being of negative mass dimen-
sion), then the theory is non-renormalisable: infinitely many counterterms are needed
to remove divergences. These operators are known as irrelevant operators. Since the
coupling constants have negative mass dimension, the higher order terms of the per-
turbation theory become more significant at higher energies. We thus say that the
operator generates a “flow towards the ultraviolet” (high energy) scale, meaning the
coupling constants grow at high energy (short length).

For example, the φ4 theory discussed about is renormalisable as [φ4] = 4 is a marginal
operator since [φ] = 1. At the quantum level, it also appears to be a marginally irrelevant
operator, which indeed leaves as an open question whether the φ4 theory is a well-defined
quantum field theory or just an effective field theory.

Marginal and relevant deformations are well-studied due to the fact that decreasing the
energy scale (increasing the length scale) removes the high momentum components of the
theory - essentially “blurring” out and losing the fine details of the theory. Given an initial
theory, ignoring the high momentum and thus ignoring small scale detail is well-defined.
However, this process is not invertible - given a theory, there are infinitely many ways to re-
add high energy behaviour (to “unblur” the small-scale details, see Figure 1.2 for a practical
example of this “renormalisation group” principle).

We posit, in fact, that at sufficiently high energies, all valid QFTs become (scale-invariant)
Conformal Field Theories (CFTs) [11]. In other words, the theory flows to a fixed point at
sufficiently high energies, and the coupling constants become fixed (rather than diverging).
Adding an arbitrary irrelevant operator to a QFT doesn’t guarantee that this will be the
case - it is difficult to maintain analytic control of an arbitrary irrelevant deformation in
general. This makes studying irrelevant operators, and high-energy theories, difficult.

These problems arise from the fact that solving for the fields of a theory themselves from
the equations of motion generated by the Euler-Langrange equations can be difficult - if not
impossible. The equations in an interacting theory are often non-linear. Fields also possess
an infinite number of degrees of freedom, and thus solving for the fields effectively requires
solving for an infinite number of variables. However, some theories possess unique properties
that allow them to be solved for.

Such QFTs are said to be “solvable”: exact solutions to the equations of motion can be
found in a closed-form way, for all values of parameters and initial conditions. In particular,
integrable Quantum Field Theories (IQFTs) are a class of solvable QFTs that are of interest.
These systems contain an infinite number of conserved quantities (integrals of motion) that
can be exploited via techniques like the inverse scattering method or Bethe ansatz to solve
the theory [1]. For example, in 2D, CFTs have an infinite-dimensional symmetry group, and
the generators of these symmetries can be used to generate constraints that aid in solving the
theory [13]. Furthermore, sometimes the integrable structure of the system provides enough
constraints such that renormalisation is unnecessary. Despite these useful properties, this
class of theories is quite small, and most IQFTs are in 2D only.

All of these compounding factors make it quite remarkable that in 2004, an irrelevant
deformation for 2D QFTs was discovered that has well-defined analytic quantum behaviour

8 Introduction

Figure 1.2: The central image has had all of its high frequency Fourier modes removed. How
does one “flow to the UV” and re-add the high frequency modes in a meaningful
way? There are (in QFTs, infinitely) many operators that can re-add high energy
modes, but in general the result may be meaningless. Original image found at [9].

[14]. This irrelevant operator is known as the TT̄ operator, due to its relationship to the
stress-energy tensor, Tµν . Because every QFT possessing translational invariance has a
stress-energy tensor, the TT̄ deformation can be constructed for all 2D QFTs. In 2016 and
2017, it was determined that TT̄ deformed theories maintain properties like integrability if
they are possessed by the undeformed theory [1]. These deformed theories exhibit analytic
control also, meaning that physical quantities like the S matrix [15] and energy spectrum
[14] can all be computed exactly from the undeformed theory. The TT̄ operator also has
interesting links to the AdS/CFT correspondence [15], which is an exciting area of research
that relates to quantum gravity. The discovery of this exciting set of properties possessed
by the TT̄ deformation has made it a popular area of study in recent years.

As mentioned above, imposing additional symmetries on a theory may yield enough con-
straints to make the theory solvable. One such symmetry is supersymmetry. The symmetry
relates bosonic (integer spin) states to fermionic (half-integer spin) states by extending the
symmetry group by anti-commuting “supercharges”. Supersymmetry is widely considered to
be part of the resolution to the issues between the Standard Model of Particle Physics, and
General Relativity (GR), and is an important component of string theory.

9

In 2018 onwards, the TT̄ deformation has been constructed for some classes of super-
symmetric theories [3] [4] [5] [6]. The TT̄ operator itself is not manifestly supersymmetric,
though it can be shown that supersymmetry is preserved by the deformation, though po-
tentially deformed. To prove supersymmetry for the two-dimensional TT̄ case, one seeks a
manifestly supersymmetric “supercurrent-squared” extension of the TT̄ operator by using
so-called superspace techniques. The resulting operator proves to be equivalent to TT̄ when
imposing the equations of motion - in other words, it is equivalent “on-shell”. This motivates
the study of TT̄ deformations of supersymmetric QFTs, where solvability could be obtained
beyond simple examples like free theories.

The study of the behaviour of supersymmetry and TT̄ has led to a classification of the
operator in theories with supersymmetries in two dimensions, for the N = (0, 1), N = (0, 2),
N = (1, 1), N = (1, 2), N = (2, 2) cases [3] [4] [5] [6].

In this thesis, we will aim to extend this work in the supersymmetric setting, constructing
the TT̄ deformation for the cases of N = (0, 4) and N = (4, 4) supersymmetry, which has
not been done before. The study of TT̄ deformations has also opened up an entirely new
avenue of research on deformations of quantum field theories and has led to interesting
results also in space-time dimensions higher than two. For instance, TT̄-like and

√
TT̄ [7]

like operators have proven to be associated with important effective field theories like the
(Dirac-)Born-Infeld theory of non-linear electrodynamics [16], which describes the effective
behavior of open strings at low-energy in string theoretical approaches to quantum gravity,
and the Modified Maxwell (ModMax) theory which has recently attracted new attention
being a new class of non-linear electrodynamics that, though non-analytic in fields, preserve
classical conformal invariance and electric-magnetic duality [7]. All these results have been
obtained with and without a certain amount of supersymmetry. Motivated by this recent
literature, we will also seek the study of TT̄-like operators in d > 2.

We will firstly begin in Chapter 2 by reviewing the TT̄ operator, how it is realised in
the quantum setting, and its nice properties. We will then discuss the construction of the
TT̄ operator in the supersymmetric setting, including the tools and formalisms needed for
understanding supersymmetry. We will also discuss how TT̄-like deformations can be realised
in 4D.

In Chapter 3, we will discuss the new tensor algebra software package that we created
as part of this project, and detail how it can be used to solve problems involving tensors.

In Chapter 4, we will analyse conformal supersymmetric theories in both 2D and 4D,
and construct the corresponding TT̄−like supercurrent-squared operators.

In Chapter 5, we will consider the generalised (non-conformal) cases of 2D supersymme-
try, and how their supercurrent-squared operators relate to TT̄.

10 Introduction

2
Review of TT̄ and Supersymmetry

Here, we will review the TT̄ deformation for 2D Quantum Field Theories. We will explore
the history of its discovery, including its construction and some rudimentary applications,
and verify that it does indeed have the properties that it boasts. We will then review
supersymmetry and the superspace formalism. This will allow us to then extend the TT̄
operator to a manifestly supersymmetric formulation in Chapter 4, and verify that, for the
2D cases, these are on-shell equivalent to TT̄ proving its supersymmetry. This will lay the
groundwork for our original construction of the TT̄ operator for N = (0, 4) and N = (4, 4)
supersymmetry in Chapters 4 and 5.

11

12 Review of TT̄ and Supersymmetry

2.1 Construction of the TT̄ Operator
The seminal TT̄ paper was published by Zamolodchikov in 2004 [14]. In this paper, by
making minimal assumptions, Zamolodchikov is able to derive a simple relation for the
expectation value of the TT̄ operator. We will derive the results of this paper here.

Recall that the stress-energy tensor T̃µν is the conserved Noether current of any theory
that possesses translational symmetry (for example, all theories with Lorentz symmetry). It
is then given by

˜T µν =
∂L

∂(∂µφ)
∂νφ− ηµνL, (2.1)

and it can be verified that ∂µ ˜T µν = 0. By default, this tensor is not symmetric for any theory
- however, it can be improved [10]. Note that by Lorentz invariance, the antisymmetric part
of ˜T µν

˜T µν − ˜T νµ = −∂ρXρµν , (2.2)

is a total derivative. Clearly, Xρµν = −Xρνµ by antisymmetry. Then, letting

Aρµν =
1

2

(
Xρµν +Xµνρ −Xνρµ

)
, (2.3)

Aρµν is clearly also antisymmetric and ∂ρAρµν is a total derivative (and thus vanishes under
another derivative) by construction. Then, defining

T µν = ˜T µν + ∂ρA
ρµν , (2.4)

one can then see that

T µν − T νµ = ˜T µν + ∂ρA
ρµν − ˜T νµ − ∂ρA

ρνµ = −∂ρXρµν + ∂ρX
µνρ = 0. (2.5)

Thus, T µν has been improved to be symmetric and is still conserved. One assumption by
Zamolodchikov is that this tensor exists. We will thus work with this symmetrised stress-
energy tensor.

Given the naissance of the theory was in the context of CFTs in two dimensions (which
in the Euclidean case that we consider here is intimately tied to the structure of C), we
instead express the stress energy tensor in holomorphic and anti-holomorphic coordinates of
the complex plane:

z = x+ iy; z̄ = x− iy, (2.6)

where (x, y) are the 2D Cartesian coordinates corresponding to space and time respectively.
Then, this allows the components of Tµν to be written as

Tzz =
1

4
(Txx − Tyy − 2iTxy), Tz̄z̄ =

1

4
(Txx − Tyy + 2iTxy), Tzz̄ =

1

4
(Txx + Tyy). (2.7)

Then, by the conventions of CFT, one defines

T (z) = −2πTzz, T̄ (z) = −2πTz̄z̄, Θ(z) = 2πTzz̄. (2.8)

2.1 Construction of the TT̄ Operator 13

Note that under this change of variables, the conservation equations become

∂z̄T (z) = ∂zΘ(z), ∂zT̄ (z) = ∂z̄Θ(z). (2.9)

Then, the TT̄ field is defined as

TT̄(z) = −π2 detTµν = 4π2(TzzTz̄z̄ − T 2
zz̄) = T (z)T̄ (z)−Θ(z)2. (2.10)

This field then adds a term which deforms our Lagrangian,

L(λ+δλ) = L(λ) + L(δλ) = L(λ) − δλ

π2
TT̄

(λ) (2.11)

=⇒ L(λ+δλ) − L(λ)

δλ
= − 1

π2
TT̄

(λ)
. (2.12)

Thus, as we take δλ→ 0, we obtain the flow equation for the TT̄ deformation [15]:

∂L(λ)

∂λ
= − 1

π2
TT̄

(λ)
. (2.13)

This defines a single-parameter flow of the Lagrangian.
In the QFT regime, as usual, these fields become operator-valued. Then, it is important

to be able to compute expectation values of these operators. In fact, a composite operator
must be well-defined inside such correlation functions in order to be considered quantum-
mechanically well-defined [12]. Thus, we will verify that this field is well-defined when
operator-valued. As seen in the introduction, computing the expectation value of the product
of two or more operators is difficult. In general, for two local operators Oi(z) and Oj(z

′),
their product can be expressed as an operator-product expansion (OPE) [14]

Oi(z)Oj(z
′) =

∑
k

Ck
ij(z − z′)Ok(z

′). (2.14)

Then, expectation values are given by

〈Oi(z)Oj(z
′)〉 =

∑
k

Ck
ij(z − z′) 〈Ok(z

′)〉 . (2.15)

Zamolodchikov assumes global translational symmetry: for all local fields, the expecta-
tion value is independent of the coordinates. In other words, 〈Ok(z

′)〉 = 〈Ok〉 is constant.
This implies that

〈Oi(z)Oj(z
′)〉 = Gij(z − z′), (2.16)

some function dependent only on point separations. Finally, it is assumed that at large
(infinite in at least one direction) separations, local operators are not-correlated (which
implies that the spacetime background is topologically either an infinite plane, or an infinite
cylinder), and that the underlying theory becomes a conformal field theory at high energies
(and thus the QFT in question is the underlying CFT perturbed by a relevant operator).
To verify the validity of the TT̄ operator in the quantum regime, one must take the limit

lim
z→z′

(T (z)T̄ (z′)−Θ(z)Θ(z′)) (2.17)

14 Review of TT̄ and Supersymmetry

and show that it leads to something well-defined. In general, products of operators at the
same spacetime point lead to divergences (in fact, we saw this for the φ4 theory in the
introduction). This is why it is remarkable that the TT̄ operator is indeed well-defined.
By taking holomorphic derivatives, applying the conservation equations and using OPEs, a
non-trivial calculation leads to show that the following equation holds

T (z)T̄ (z′)−Θ(z)Θ(z′) = OTT̄(z
′) + derivatives. (2.18)

Since the right hand side of this equation is independent of z (except for the derivatives), the
limit can be taken linearly. Note that thanks to the assumed global translational symmetry,
such derivative terms vanish under taking the expectation. Thus, one defines

TT̄(z) ≡ OTT̄(z), (2.19)

which is quantum mechanically well-defined mod derivatives. Thus, the TT̄ operator is well-
defined for 2D QFTs, under the stated assumptions. Furthermore, it was shown that the
correlation function of the TT̄ operator can also be factorised. Following a similar procedure
of taking holomorphic derivatives, it was shown that

〈TT̄〉 = 〈T (z)T̄ (z′)〉 − 〈Θ(z)Θ(z′)〉 (2.20)

is not only a constant and independent of coordinates, but also

〈TT̄〉 = 〈T 〉 〈T̄ 〉 − 〈Θ〉 〈Θ〉 . (2.21)

This means that the operators are uncorrelated, regardless of separation or direction. Fur-
thermore on cylindrical spacetime of radius R, it can be shown that this relation holds for
the expectation with respect to any non-degenerate energy eigenstate, not just the vacuum.
Indeed, one can show by the same process that

〈n|TT̄|n〉 = 〈n|T (z)T̄ (z′)|n〉 − 〈n|Θ(z)Θ(z′)|n〉 (2.22)

is constant, and independent of the coordinates. Once also provide the same factorisation
formula holds by using the spectral decomposition,

〈n|T (z)T̄ (z′)|n〉 =
∑
n′

〈n|T (z)|n′〉 〈n′|T̄ (z)|n〉 · e(En−En′ |y−y′|+i(Pn−Pn′)(x−x′), (2.23)

and similarly for the Θ(z) term. By using the fact that the expression should be coordinate
independent, terms with n 6= n′ vanish, and assuming that |n〉 is non-degenerate, one gets
the factorisation

〈n|TT̄|n〉 = 〈n|T |n〉 〈n|T̄ |n〉 − 〈n|Θ|n〉 〈n|Θ|n〉 (2.24)

By using the definition of the components of Tµν , one can rewrite this in terms of the
radius dependent spectrum,

2.1 Construction of the TT̄ Operator 15

〈n|TT̄|n〉 = −π
2

R

(
En(R, λ)

d

dR
En(R, λ) +

1

R
P 2
n(R)

)
(2.25)

Then, recalling the flow equation for TT̄, one can see that

〈n|TT̄|n〉 = −π2 〈n|∂λL(λ)|n〉 = −π
2

R
∂λEn(R, λ) (2.26)

This yields an equation:

∂λEn(R, λ) = En(R, λ)
d

dR
En(R, λ) +

1

R
P 2
n(R). (2.27)

Therefore, remarkably, the deformed spectrum is directly computable from the undeformed
spectrum by solving this partial differential equation. In fact, the PDE is the inviscid
Burgers’ equation with a driving force and is well-known in the context of fluid mechanics
[14]. Given a theory where the explicit dependence of energy and momentum on radius is
known, for example in CFTs, the deformed energies can be solved for exactly. Note that
in this derivation, we have used a Cartesian coordinate system. The ability to factorise
expectation values can be proven covariantly, as seen in [15].

Another property that we claimed that the TT̄ operator boasts is that it preserves in-
tegrability, if the undeformed theory is an IQFT [1]. Recall that an IQFT is special as it
contains an infinite number of commutative conserved charges, or integrals of motion, we
will denote as Qs (Q̄s ≡ Q−s). These charges are defined as the spatial integral of some
local conserved currents, which we denote as Ts+1(z) and Θs−1(z) (T̄s+1(z) ≡ Θ−s−1(z) and
Θ̄s−1(z) ≡ T−s+1(z)), which satisfy

∂z̄Ts+1(z) = ∂zΘs−1(z), ∂zT̄s+1(z) = ∂z̄Θ̄s−1(z). (2.28)

From these currents, it then holds that

Qs =

∫
C

Ts+1(z)dz +Θs−1(z)dz̄, Q̄s =

∫
C

T̄s+1(z)dz̄ + Θ̄s−1(z)dz (2.29)

are conserved charges. Here, s denotes the (integer) spin. For s = 1, these currents are
precisely the components of the stress-energy tensor. Note that since

[Qs, Qs′] = 0 (2.30)

by the definition of an IQFT, this implies that

[Qs, Ts′+1] = ∂zFs,s′(z), [Qs,Θs′−1] = ∂z̄Fs,s′(z), (2.31)

[Qs, T̄s′+1] = ∂z̄Gs,s′(z), [Qs, Θ̄s′−1] = ∂zGs,s′(z), (2.32)
for some local fields F and G, as each of these charges commute.

We would thus like to show that the commutator of each charge with the TT̄ operator is
a total derivative, and thus the deformation preserves integrability. Using the point splitting
approach from which TT̄ was defined, the commutator is given by

[Qs, T (z)T̄ (z
′)−Θ(z)Θ(z′)]

16 Review of TT̄ and Supersymmetry

= [Qs, T (z)]T̄ (z
′) + T (z)[Qs, T̄ (z

′)]− [Qs,Θ(z)]Θ(z′) + Θ(z)[Qs,Θ(z′)]

= ∂zFs,1(z)T̄ (z
′) + T (z)∂z̄Gs,1(z

′)− ∂z̄Fs,1(z)Θ(z′) + Θ(z)∂zGs,1(z
′) (2.33)

Note that by continuity

∂zFs,1(z)T̄ (z
′)− ∂z̄Fs,1(z)Θ(z′) = ∂z[Fs,1(z)T̄ (z

′)]− ∂z̄[Fs,1(z)Θ(z′)]

= (∂z + ∂z′)[Fs,1(z)T̄ (z
′)]− ∂z′ [Fs,1(z)T̄ (z

′)]− ∂z̄[Fs,1(z)Θ(z′)]

= (∂z + ∂z′)[Fs,1(z)T̄ (z
′)]− Fs,1(z)∂z′T̄ (z

′)− ∂z̄[Fs,1(z)Θ(z′)]

= (∂z + ∂z′)[Fs,1(z)T̄ (z
′)]− Fs,1(z)∂z̄′Θ(z′)− ∂z̄[Fs,1(z)Θ(z′)]

= (∂z + ∂z′)[Fs,1(z)T̄ (z
′)]− (∂z̄ + ∂z̄′)[Fs,1(z)Θ(z′)], (2.34)

and similarly for the terms involving Gs,1. Thus, when taking the limit z → z′, one sees that
the TT̄ operator commutes with all of the conserved charges up to a combination of total
derivatives, which vanishes under expectation values as reasoned previously. This implies
that integrability is conserved under the deformation.

It is also useful to note that the TT̄ operator modifies the scattering S-matrix in a pre-
dictable way. This is important, as the S−matrix is one of the most important obseravables
for a QFT. Specifically, the deformed S-matrix can be computed from the undeformed S-
matrix by multiplying by a phase factor of the Castillejo-Dalitz-Dyson type, known as a
CDD factor. The factor is given by [15]

e−iδ
(λ)
ij = e−iλεµνp

µ
i p

ν
j , (2.35)

and the deformed S-matrix becomes

S(λ)({pi}) = (Πi<je
−iδ

(λ)
ij)S({pi}), (2.36)

where {pi} is the set of momenta of the incoming particles. When applied to the case of
TT̄ production, the CDD phase factor can modify the shape of the differential cross section
for the process, leading to non-trivial effects that can be used to probe the structure of the
underlying theory. The factor is sometimes known as a “gravitational dressing” due to its
relationship with spacetime geometry. The deformed S-matrix also still satisfies unitarity,
crossing symmetry, and, for integrable QFTs, the Yang-Baxter equations, implying again
that the TT̄ deformation preserves integrability [15].

In summary, it has been shown that the TT̄ operator is not only a well-defined irrelevant
operator, but that it deforms the spectrum and modifies the S-matrix of a theory in a
controlled way, and also preserves the integrability of a theory.

2.2 TT̄ Examples

The typical toy example of TT̄ deforming a classical theory is for the free boson. The
Lagrangian for such a theory is simple,

2.2 TT̄ Examples 17

L(0)
FB =

1

2
gµν∂µφ∂νφ. (2.37)

We would then like to find L(λ)
FB by solving the flow equation for the classical Lagrangian.

For a general Lagrangian with an explicit dependence on a Euclidean metric, The Hilbert
stress-energy tensor is known to be of the form [17]

T (λ)
µν = − 2√

−g

δ

(∫
d2x

√
−gL(λ)

)
δgµν

= gµνL(λ) − 2
∂L(λ)

∂gµν
. (2.38)

One can compute the TT̄ deformation from its definition using this stress-energy tensor,

−π2TT̄ =
1

2
εµνερσTµρTνσ = (L(λ))2 − 2L(λ)gµν

∂L(λ)

∂gµν
+ 2εµνερσ

∂L(λ)

∂gµρ
∂L(λ)

∂gνσ
, (2.39)

and thus the flow equation reads

∂L(λ)

∂λ
= (L(λ))2 − 2L(λ)gµν

∂L(λ)

∂gµν
+ 2εµνερσ

∂L(λ)

∂gµρ
∂L(λ)

∂gνσ
. (2.40)

For the free boson, we can observe that the tensor

Xµν = ∂µφ∂νφ (2.41)

is symmetric with trace X = gµνXµν . Then, our Lagrangian becomes

L(0)
FB =

1

2
X. (2.42)

Note that this action is diffeomorphism invariant. In order to preserve this symmetry, the
deformed Lagrangian can be only a function of scalar variables, X and λ, L(λ)

FB = L(X,λ).
This greatly simplifies the expression for the flow equation [17]:

∂L(λ)
FB

∂λ
= (L(λ)

FB)
2−2L(λ)

FBg
µν ∂L

(λ)
FB

∂gµν
= (L(λ)

FB)
2−2L(λ)

FBg
µν ∂L

(λ)
FB

∂X

∂X

∂gµν
= (L(λ)

FB)
2−2L(λ)

FBX
∂L(λ)

FB

∂X
(2.43)

This can be written in the form

∂λL(λ)
FB + (X∂X − 1)L(λ)

FB
2 = 0, (2.44)

which is the Burgers’ equation. Solving this PDE thus yields the deformed Lagrangian

L(λ)
FB = − 1

2λ
+

1

2λ

√
1 + 2λX. (2.45)

However, this deformed Lagrangian is actually the Lagrangian that describes a free
bosonic string of tension 1/λ living in a 3D space, the Nambu-Goto Lagrangian, in the

18 Review of TT̄ and Supersymmetry

static gauge. This demonstrates the UV flow behaviour of the TT̄ operator: the theory
flows towards the high-energy limit string theory. Clearly, when λ = 0, the tension becomes
infinite, and the Lagrangian reduces to that of a point particle. For finite λ, the Lagrangian
describes a non-local extended object. This is just one instance of the connection between
the TT̄ deformation and string theory, which suggests that the operator may be the key to
interpolating between local quantum field theories and string theory. For more details, see
[15].

2.3 Supersymmetry and Superspace

2.3.1 Supersymmetry and the Superpoincaré Algebra
Any field theory defined on Minkowski spacetime, which regards space and time as oppo-
site metric components, must possess certain symmetries in order to comply with Special
Relativity. The Poincare group, which includes rotations, translations, and boosts, is the
sensible choice of group to describe the symmetry of these theories. If a field theory is in-
variant under the Poincare group, it means that the physical laws are unchanged under the
group’s transformations. Indeed, this aligns with the axiom that the laws of physics should
be the same regardless of the choice of coordinates system, or reference frame. The Poincare
algebra, described by Lie brackets

[P µ, P ν] = 0, (2.46)
[Mµν , P σ] = i(P µgνσ − P νgµσ), (2.47)

and
[Mµν ,Mρσ] = i (Mµσgνρ +Mνρgµσ −Mµρgνσ −Mνσgµρ) , (2.48)

where P is the generator of translations, g is the Minkowski metric, and M is the generator
of rotations and Lorentz boosts, generates the Poincare group. The study of the symmetries
of a theory can reveal important information about its physics. In particular, continuous
symmetries that belong to Lie groups can give rise to conserved quantities, as described by
Noether’s theorem. To discover new physics, one approach is to examine the theory and look
for additional symmetries. Another way to explore new physics is to extend the underlying
symmetry group and see if a corresponding physical theory can be established. Naturally,
the question arises, “how can one extend a symmetry group or algebra while maintaining a
physically realisable theory?”

According to the Coleman Mandula Theorem [18], the Poincare algebra is the largest Lie
algebra that corresponds to a physically realisable theory, up to the addition of arbitrarily
many generators that commute with the entire algebra. For example, in the Standard
Model, this “internal” symmetry group is SU(3) ⊗ SU(2) ⊗ U(1), which allow for enough
physics to unify 3 out of 4 fundamental forces. There is no non-trivial way of extending the
Poincare Lie algebra. Instead, however, one can generalise the Lie algebra to a graded Lie
algebra, specifically a (Z2-graded) “super” Lie algebra. This bypasses the Coleman Mandula
Theorem, as established by the Haag, Lopuszanski-Sohnius Theorem [19]. In this case, one
can extend the superalgebra non-trivially by adding anticommuting “fermionic” generating

2.3 Supersymmetry and Superspace 19

elements to the algebra, known as the supercharges, Q. These elements are spinorial in
nature, and are often denoted Qi

α and Qα̇

i , where α and α̇ are spinor indices in the complex
Weyl spinor and complex conjugate Weyl spinor representation respectively, and i is the
internal isospin flavour index.

In the simplest case, there is one such pair of generators, known as N = 1 supersymmetry.
In this project, we will work with classes of supersymmetry with more generators. The Lie
brackets between the generators of this superalgebra are given by (here we present the 4D
N -extended case):

[Pµ, Pν] = 0

[Mµν , Pρ] = i(ηµρPν − ηνρPµ)

[Mµν ,Mρσ] = i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ)

[Pµ, Q
i
α] = 0

[Mµν , Q
i
α] =

i

2
(σµν)

β
αQ

i
β

[Pµ, Q
α̇

i] = 0

[Mµν , Q
α̇

i] = − i

2
(σµν)

α̇
β̇
Q

β̇

i

{Qi
α, Q

β̇

j } = 2δijP
β̇
α

{Qi
α, Q

j
β} = εαβZ

ij

{Qα̇

i , Q
β̇

j } = εα̇β̇(Zij)
∗, (2.49)

where σµν are the spin generators of the Lorentz group, ηµν is the Minkowski metric and Zij

are some central charges that commute with the rest of the algebra [20].
When the Q-generators act on bosonic states, they are transformed into fermionic states

by modifying the spin by 1
2
. Note that each generator can be applied only once to a state

due to their anticommuting nature. This means that applying each of the supercharges in
the supersymmetry theory facilitates the construction of a finite-sized “multiplet” of bosonic
and fermionic states. This in essence unifies particles of matter (fermions) and mediators of
forces (bosons).

One can construct such a particle multiplet by considering “on-shell” (where the particle
satisfies its equations of motion and has its physical mass) representations of this algebra.
Firstly, one can observe that the operator P 2 commutes with all elements of the algebra,
making it a Casimir of supersymmetry. The consequence of this is that all fields in a multiplet
must have the same mass. The construction of the multiplet is quite straightforward, by
treating the supercharges as ladder operators that increment spin rather than energy.

For field representations, one must consider “off-shell’ representations, where the field
may not satisfy the energy-momentum relation. These representations in essence describe
the full physics of the theory. This is important for QFTs; for example, virtual particles are
considered off-shell [12]. Such representations are more complex than on-shell ones. As they
do not satisfy the energy-momentum relation, these representations have less constraints -

20 Review of TT̄ and Supersymmetry

they have more degrees of freedom than physical degrees of freedom. For example, a massive
spin 1 particle in 4D spacetime is described by a vector field. Although this vector field has
four components, there are only three physical polarisations for this particle. This makes
the theory more complex to study, and often one must impose additional constraints (such
as gauge fixing) which can lead to different physical interpretations.

2.3.2 Superspace
Fortunately, in the case of supersymmetric theories, in the 1970s, the superspace formalism
was introduced as a tool for describing off-shell supersymmetric theories [20]. In superspace,
spacetime is extended by additional fermionic coordinates, which allow for supersymmetric
fields to be described in a natural way.

In superspace, one has both commuting (that we are familiar with) and anticommuting
coordinates,

[x, x] = 0, [x, θ] = 0, {θ, θ} = 0. (2.50)

where x are commuting coordinates and θ (and θ̄, depending on the number of SUSY gen-
erators) is used for the anticommuting coordinates. These anticommuting coordinates are
Grassmann numbers and obey a particular set of rules with respect to integration and dif-
ferentiation [20].

In order to understand the utility of this extension, first one must understand what
is meant by spacetime. Recall that the Poincaré group is the group that preserves the
structure of spacetime: translations, rotations, boosts, etc. This contains the Lorentz group
as a subgroup, which is the group that preserves the structure of spacetime, and the origin.
Because both of these groups are Lie groups, one can think of them as smooth manifolds. One
can then think of a point in spacetime as a coset of the quotient group (Poincaré)/(Lorentz)-
in other words, physical spacetime is the manifold in which points cannot be related by
a Lorentz transformation. Effectively, one is left with a manifold corresponding to the
translational subgroup of the Poincaré group, as expected. One is left with a manifold
parametrised by

s(x) = eix
µP̂µ , (2.51)

where P̂µ are the generators of the quotient group.
Similarly, superspace is the corresponding coset space one obtains from taking the quo-

tient (super-Poincaré)/(Lorentz) [20]. For the case of 4D N = 1 supersymmetry, for example,
one is left with a manifold parametrised by

S(x, θ, θ̄) = ei(x
αβ̇ P̂αβ̇+θαQ̂α+θ̄α̇

¯̂
Qα̇). (2.52)

Again, Ô are the generators of the quotient group, and thus x, θ and θ̄ have the natural
interpretation of coordinates. Note that the number of Grassmann coordinates in superspace
is dependent on the dimension and number of SUSY generators. It is worth noting that these
θ’s and x’s do not mix with each other under Lorentz transformations. This parameterisation
also gives the action of the supercharge the interpretation of translation in superspace.

Then, to obtain supersymmetric representations of fields, we consider superfields Ψ(x, θ, θ̄)
as a function over superspace. The convienience of this is that one can expand the superfield

2.3 Supersymmetry and Superspace 21

as a Taylor series in θ (and θ̄) that will terminate at finite order due to the anticommuting
nature of the Grassmann variables. The coefficient functions in these expansions can be
thoought of the physical fields in the supersymmetry multiplet. For example, for the case of
3D N = 1 SUSY, a scalar superfield Φ(x, θ) can be expanded in terms of two real Grassmann
coordinates as [20]

Φ(x, θ) = A(x) + θαψα(x)− θ2F (x). (2.53)
This Taylor series terminates at this order thanks to the anticommuting nature of θ and the
fact that in 3D the spinor indix α takes values α = ±, which implies θαθβθγ = 0. This allows
for one to express the field content of the theory in a single field over superspace. Rather than
using this θ-expansion directly, one can rather extract the field content by taking covariant
derivatives:

A(x) = Φ(x, θ)|,
ψα(x) = DαΦ(x, θ)|,
F (x) = D2Φ(x, θ)|, (2.54)

where the bar | denotes projection by setting θ = 0 after evaluating the derivatives, where
the covariant derivative over superspace is (see Appendix A for notation)

Dα = ∂α + θβi∂αβ. (2.55)

One can then construct a Lagrangian and an invariant action

L =

∫
d2θf(Φ, DαΦ, ...), (2.56)

S =

∫
d3xd2θf(Φ, DαΦ, ...), (2.57)

where f is known as the superspace Lagrangian. Using the properties of Grassmann inte-
gration, one can alternatively (and more usefully) write the action as

S =

∫
d3xD2f(Φ, DαΦ, ...)|. (2.58)

In our d = 3 example of the scalar superfield, by dimensional analysis, one obtains the action

S = −1

2

∫
d3xd2θ(DαΦ)

2 =
1

2

∫
d3xd2θΦD2Φ. (2.59)

One can then use projections to find the spacetime Lagrangian density,

=⇒ =
1

2

∫
d3xD2[ΦD2Φ]|= 1

2

∫
d3x(F 2 + ψαi∂βαψβ + A�A). (2.60)

From the Euler-Lagrange equations, one can see that F = 0 as an equation of motion. This
auxiliary field can thus be neglected from the action - however, this means that the super-
symmetry transformations will only close on-shell for A and ψα. Thus it is clear that the
superspace formalism is a powerful tool for constructing off-shell representations of super-
symmetry.

22 Review of TT̄ and Supersymmetry

2.3.3 Extended Supersymmetry, Dimensional Dependancy of Rep-
resentations, and Superspace Parametrisation

In general, a supersymmetric theory may possess more than one pair of supercharges. How
representations of this algebra are realised, and thus the way in which we parameterise super-
space, is highly dependent on the dimension under consideration. Indeed, the transformation
properties of spinors are dimension-dependent. Spinors transform as representations of the
Lorentz group SO(d− 1, d).

In 4D, spinors transform under so(3, 1) ∼= sl(2,C), and minimal representations can
either be described in terms of two-component chiral Weyl spinors related by complex con-
jugation, or four-component real Majorana spinors. Thus, there are four independent real
degrees of freedom associated with a spinor. So for the fermionic supercharges, there are
four real associated Grassmann coordinates. This means for n−extended supersymmetry,
there are 4n associated Grassmann coordinates. Since a reality condition cannot be imposed
on the Weyl spinors, 4D extended SUSY theories are labelled by a single integer, N = n.

In 2D, spinors transform under so(1, 1) ∼= R. The minimal representations can thus be
described by two, one-component, chiral Weyl spinors. Due to the above isomorphism, it is
possible to impose reality conditions on the Weyl spinors, as they stay real under the action of
the Lorentz group. Thus the two Weyl spinors are independent and real. These two spinors
are labeled by their chirality ±, which determines the representation (fundamental/anti-
fundamental) under which they transform. The spinors are thus dubbed as left-moving or
right-moving, which will be further discussed below. Due to these reasons, in simple super-
symmetry, the spinorial supercharges can be real, and labelled by their chirality eigenvalues,
and thus have one Grassmann coordinate each. In extended supersymmetry, there may be
p left-moving supercharges, and q right-moving supercharges, which are independent. Thus,
in 2D, extended supersymmetry theories must be labelled by two integers, N = (p, q),
and superspace is parameterised by p real left-moving Grassmann coordinates and q real
right-moving Grassmann coordinates.

2.4 Lightcone Coordinates

Before discussing TT̄ and SUSY, we will first introduce a more convenient coordinate system
for the 2D Lorentzian theories which are the subject of our studies. These are the lightcone
coordinates, given by

x±± =
1√
2
(x0 ± x1), (2.61)

where (x0, x1) are the usual space and time coordinates in 2D. These coordinates describe
the position of a particle on the lightcone, and thus are natural for describing massless
particles in a 2D theory. They are the real analogue of holomorphic and antiholomorphic
complex coordinate of the Euclidian plane. These coordinates are termed either left-moving
(x−−), or right-moving (x++), as a massless particle moving left (−x1 direction) will be
described entirely by the x−− coordinate with x++ = 0 along its trajectory, and likewise for

2.5 TT̄ and Supersymmetry 23

a right-moving massless particle. Note that these coordinates are invariant under Lorentz
transformations, and obey

∂±±x
∓∓ = 0. (2.62)

Usefully, the number of ± indices on objects in this coordinate system describe how
the object transforms under Lorentz transformations. For example, spinorial objects will
have only a single ± index, while vectors will have two ± indices, and so-on for higher spin
objects. A description of the index rules of such objects in this coordinate system can be
found in Appendix A.1. Note also that in contrast to the usual Einstein summation notation,
repeated lightcone indices do not denote summation.

2.5 TT̄ and Supersymmetry
The usual TT̄ deformation is constructed from the stress-energy tensor, the conserved cur-
rent generated by spacetime translations. In order to obtain a supersymmetric analogue to
the deformation, it would be desirable to work with the conserved currents generated by
translations in superspace. To demonstrate how this works, consider N = (1, 1) supersym-
metry, in 2D [6] (which is a direct analogue of 3D N = 1 described by two real supercharges
and two real Grassmann spinors θ+ and θ−). The Lagrangian for such a theory, in its most
general form, is given by

L =

∫
d2θf(Φ, D+Φ, D−Φ, ∂++Φ, ∂−−Φ, D+D−Φ). (2.63)

This Lagrangian has the associated equation of motion

δf

δΦ
= D+

(
δf

δD+Φ

)
+D−

(
δf

δD−Φ

)
+∂++

(
δf

δ∂++Φ

)
+∂−−

(
δf

δ∂−−Φ

)
−D+D−

(
δf

δD+D−Φ

)
.

(2.64)
Once can then express the variation of f , δf , in terms of δΦ by using the product rule,

δf = δΦ

[
D+

(
δf

δD+Φ

)
+D−

(
δf

δD−Φ

)
+∂++

(
δf

δ∂++Φ

)
+∂−−

(
δf

δ∂−−Φ

)
−D+D−

(
δf

δD+D−Φ

)]

= D+

(
δΦ

δf

δD+Φ

)
+D−

(
δΦ

δf

δD−Φ

)
+ ∂++

(
δΦ

δf

δ∂++Φ

)
+ ∂−−

(
δΦ

δf

δ∂−−Φ

)

+
1

2

(
D+

(
δf

δD+D−Φ
DδΦ

)
+D−

(
δΦD+

δf

δD+D−Φ

))

−1

2

(
D−

(
δf

δD+D−Φ
D + δΦ

)
+D+

(
δΦD−

δf

δD+D−Φ

))

−δΦ

(
− δf

δΦ
+D+

(
δf

δD+Φ

)
+D−

(
δf

δD−Φ

)
+∂++

(
δf

δ∂++Φ

)
+∂−−

(
δf

δ∂−−Φ

)
−D+D−

(
δf

δD+D−Φ

))
.

(2.65)

24 Review of TT̄ and Supersymmetry

Note that the last line is equal to zero when the variations are on-shell, and thus vanishes.
Now, consider some small spacetime translation, δx±± = ε±±. Then, one has the variations
δf = ε++∂++f + ε−−∂−−f , and δΦ = ε++∂++Φ + ε−−∂−−Φ. Given that the former is a
total derivative, it vanishes under integration when computing the action. Then, in order
for the action to remain invariant, the righthand side of (2.65) must be equal to 0 under the
variation of Φ. Applying this variation yields the constraint

0 = ε++D+

[
∂++Φ

δf

δD+Φ
+D+

(
∂++Φ

δf

δ∂++Φ
)+

1

2

δf

δD+D−Φ
D−(∂++Φ)−

1

2
∂++ΦD−(

δf

δD+D−φ

)
−D+f

]
+ε++D−

[
∂++Φ

δf

δD−Φ
+D−

(
∂++Φ

δf

δ∂−−Φ
)− 1

2

δf

δD+D−Φ
D+(∂++Φ)+

1

2
∂++ΦD+(

δf

δD+D−φ

)]
+ε−−D+

[
∂−−Φ

δf

δD+Φ
+D+

(
∂−−Φ

δf

δ∂++Φ
)+

1

2

δf

δD+D−Φ
D−(∂−−Φ)−

1

2
∂−−ΦD−(

δf

δD+D−φ

)]
+ε−−D−

[
∂−−Φ

δf

δD−Φ
+D−

(
∂−−Φ

δf

δ∂−−Φ
)−1

2

δf

δD+D−Φ
D+(∂−−Φ)+

1

2
∂−−ΦD+(

δf

δD+D−φ

)
−D−f

]
.

(2.66)
Making the definitions

T++− = ∂++Φ
δf

δD+Φ
+D+

(
∂++Φ

δf

δ∂++Φ
)+

1

2

δf

δD+D−Φ
D−(∂++Φ)−

1

2
∂++ΦD−(

δf

δD+D−φ

)
−D+f,

(2.67)
T+++ = ∂−−Φ

δf

δD+Φ
+D+

(
∂−−Φ

δf

δ∂++Φ
)+

1

2

δf

δD+D−Φ
D−(∂−−Φ)−

1

2
∂−−ΦD−(

δf

δD+D−φ

)
,

(2.68)
T−−− = ∂−−Φ

δf

δD+Φ
+D+

(
∂−−Φ

δf

δ∂++Φ
)+

1

2

δf

δD+D−Φ
D−(∂−−Φ)−

1

2
∂−−ΦD−(

δf

δD+D−φ

)
,

(2.69)
T−−+ = ∂−−Φ

δf

δD−Φ
+D−

(
∂−−Φ

δf

δ∂−−Φ
)−1

2

δf

δD+D−Φ
D+(∂−−Φ)+

1

2
∂−−ΦD+(

δf

δD+D−φ

)
−D−f,

(2.70)
one can plainly see that these are (divergenceless) conserved quantities for each lightcone
coordinate satisfying the conservation equations

D+T++− +D−T+++ = 0, (2.71)

D+T−−− +D−T−−+ = 0. (2.72)
Now, consider the flow equation

∂

∂λ
f (λ) = T (λ)

+++T
(λ)
−−− − T (λ)

−−+T
(λ)
++−. (2.73)

We claim that this supercurrent-square deformation is the N = (1, 1) manifestly supersym-
metric analogue to the TT̄ deformation [6]. To explicitly see this, consider the free scalar
superspace Lagrangian (this time in lightcone coordinates),

f = D+ΦD−Φ, (2.74)

2.6 4D TT̄-like Deformations 25

with superfield expansion

Φ(x, θ+, θ−) = A(x) + iθ+ψ+(x) + iθ−ψ−(x) + θ+θ−F (x). (2.75)

Then, the supercurrent takes the form

T++− = ∂++ΦD−Φ−D+(D+ΦD−Φ), (2.76)

T+++ = −∂++ΦD+Φ, (2.77)

T−−− = ∂−−ΦD−Φ, (2.78)

T−−+ = −∂−−ΦD+Φ−D−(D+ΦD−Φ). (2.79)

Integrating out the Grassmann coordinates, one gets the term∫
d2θ(T+++T−−− − T−−+T++−) = −

(
(∂++φ)

2 + ψ+∂++ψ+

)(
(∂−−φ)

2 + ψ−∂−−ψ−

)
−2∂++φ∂−−φ(ψ+∂−−ψ+ + ψ−∂++ψ−)− ψ−∂++ψ−ψ+∂−−ψ+. (2.80)

The first term is precisely the usual TT̄ field for the scalar theory in question. The remaining
two terms are proportional to the fermion equations of motion, ∂±±ψ∓ = 0. These terms
thus vanish on-shell, and thus the supercurrent-squared deformation is equivalent to TT̄. It
is also possible to prove that this deformation indeed has the same solvability properties as
the TT̄ deformation [6].

One can construct similar supercurrent-squared deformations for SUSY theories for dif-
ferent numbers of generators. This has been done for N = (1, 1) supersymmetry, as seen
above, which can easily be reduced to N = (0, 1) SUSY [3]. A similar, but more involved,
approach can be followed to obtain the deformation for N = (2, 2) SUSY and N = (0, 2)
SUSY [4] [5] [6]. In this thesis, we aim to extend this construction to the N = (0, 4) and
N = (4, 4) cases.

2.6 4D TT̄-like Deformations
4D supersymmetry has interesting links to 2D supersymmetry, and thus can be a potentially
helpful tool in studying N = (4, 4) and N = (0, 4) supercurrent-squared deformations - they
should be related to analogous 4D deformation via dimensional reductions and truncation.
Thus, we shall also review these 4D deformations.

In two dimensions, the TT̄ operator is given by

TT̄ = TµνT
µν − (T µ

µ)
2 = T µνTµν −Θ2 ∝ detTµν . (2.81)

One can attempt to generalise this operator to higher dimensions by considering the operator

O
[r]

T 2 = T µνTµν − rΘ2, r ∈ R. (2.82)

In 2D, choosing r = 1 uniquely yields a well-defined operator at the quantum level [16].
Unfortunately, in higher dimensions, there is no such known r that yields as well-defined

26 Review of TT̄ and Supersymmetry

operator. However, certain values of r make interesting choices when deforming a classical
theory. For example, consider a constant shift in the vacuum energy of the theory (for
example, generated by a cosmological constant),

L → L+ c, T µν → T µν − cηµν . (2.83)

This transforms the operator (2.82) as [16]

O
[r]

T 2 → O
[r]

T 2 + 2c(2r − 1)Θ + 4c2(1− r). (2.84)

This Θ trace term causes the operator to transform in a non-trivial way, and vanishes only
in the case r = 1

2
. Note that any other choice is peculiar, as the dynamics of the undeformed

theory are modified by a shift in energy. For this choice of r, the dynamics of the theory are
unaffected. Thus, we will consider henceforth

OT 2 = T µνTµν −
1

2
Θ2. (2.85)

One can then consider the generalisation of this operator to 4D N = 1 SUSY, as seen in
[16]. To do so, we will assume there exists a Ferrara-Zumino multiplet of currents, described
by a vector superfield Jµ and complex scalar superfield X satisfying the constraints

D̄α̇Jαα̇ = DαX , D̄α̇X = 0. (2.86)

Solving these constraints gives a supercurrent of the form

Jµ(x) =jµ(x) + θ

(
Sµ −

1√
2
σµχ̄

)
+ θ̄

(
S̄µ +

1√
2
σ̄µχ

)
+
i

2
θ2∂µx̄−

i

2
θ̄2∂µx

+ θσν θ̄

(
2Tµν −

2

3
ηµνΘ− 1

2
ενµρσ∂

ρjσ
)

− i

2
θ2θ̄

(
¯6∂Sµ +

1√
2
σ̄µ 6∂χ̄

)
− i

2
θ̄2θ

(
6∂S̄µ −

1√
2
σµ¯6∂χ

)
+

1

2
θ2θ̄2

(
∂µ∂

νjν −
1

2
∂2jµ

)
,

(2.87)

and scalar field of the form

X (y) = x(y) +
√
2θχ(y) + θ2F(y),

χα =

√
2

3
(σµ)αα̇ S̄

α̇
µ , F =

2

3
Θ + i∂µj

µ,
(2.88)

where yµ = xµ+iθσµθ̄ and 6∂ = σµ∂µ, ¯6∂ = σ̄µ∂µ. Then, considering the supercurrent-squared
operator over supersapce given by

OT 2 = −1

2
(ηµνJµJν +

5

4
χχ̄), (2.89)

2.6 4D TT̄-like Deformations 27

one can integrate over the Grassmann coordinates to obtain the supersymmetric operator

OT 2 =

∫
dθOT 2 = T 2−1

2
Θ2+

3

8
jµ∂

2jµ+
3

8
∂µx∂

µx̄− i

2

(
Sµ 6∂S̄µ−9

4
χ̄ 6 ∂̄χ

)
+EOM +tot. derivs.,

(2.90)
which is clearly the natural extension of the operator OT 2 in the supersymmetric setting. It
is worth noting that for 2D, OT 2 = OT 2 up to terms that vanish on-shell, but clearly for 4D
OT 2 has extra current contributions. It seems as if it is not possible to construct an OT 2 such
that OT 2 = OT 2 from the combinations of the supercurrent superfield squared in 4D N = 1
SUSY. This suggests that the two operators will lead to two different flows, in contrast to
the 2D case.

Despite the fact that the flow generated by this operator OT 2 is not well-defined at the
quantum level, it can still generate a classical flow. For example, it has been shown that
the 4D N = 1 Supersymmetric Born-Infeld Lagrangian can be obtained as a supercurrent-
squared flow of the N = 1 free Maxwell Lagrangian [16]. What’s interesting about these 4D
flows is their relationship to 2D flows. In particular, the non-linearly realized supersymmetry
in two-dimensional N = (2, 2) theories can be described by a supercurrent-squared term,
which is similar to the one in the four-dimensional N = 1 supersymmetric Born-Infeld
Lagrangian. Moreover, to some extent, 4D supersymmetry is better studied than extended
supersymmetry in 2D. The 4D N = 1 case is related by a dimensional reduction to 2D
N = (2, 2). The case of 2D N = (4, 4) is directly connected to 4D N = 2 though the former
is much less understood. For instance, the general structure of the supercurrent multiplet for
2D N = (4, 4) is not known yet. This is a problem since the recent classification of manifestly
supersymmetric forms of the T T̄ operators is based on supercurrent squared operators.
A large part of our work is then to construct supercurrents for extended supersymmetry
and then explore T T̄ operators. Since the constraints for the 4D N = 2 supercurrent are
better understood, analysis of this theory is a good starting point for understanding the
dimensionally reduced case in 2D.

28 Review of TT̄ and Supersymmetry

3
Design and Usage of the Tensor Algebra

Software

Working in the superspace formalism, one can see that as the number of supersymmetry
generators of the theory increases, the number of Grassmann coordinates that are needed
to describe superspace increases in step. Since the superfield expansion involves all possible
products of these Grassmann coordinates, the number of terms in the superfield expansion
increases exponentially with the number of generators. Indeed, for N = (p, q) supersymme-
try, there are roughly O(2p+q) possible terms. Additionally, in a general study of spacetime
and curved space (outside the scope of our project) if one would like to take (potentially
many applications of) covariant derivatives on such an expression, then the number of terms
in the final expression will be roughly O((1 + k)n · 2p+q), where k is the number of con-
nection terms, and n is the number of applications of the derivative. Clearly, in a theory
with even a modest number of connection terms, these expressions grow quickly and become
exceptionally unwieldy.

Additionally, when performing algebra in the supersymmetric setting, one must keep
in mind the grading (whether the objects are bosonic or fermionic) of objects, including
operators, as anticommuting objects acquire a minus sign when swapped. This makes by-
hand computations potentially error-prone when commuting variables in large expressions.

This motivates the use of computer algebra software to perform such computations.
Although there are a few pieces of software that can do similar manipulations already

[21] [22], they each have their limitations; either they are unwieldy to use, require licensed
software, don’t handle graded objects natively (or act unpredictable when performing op-
erations like the graded Leibniz rule), or don’t allow for the use of multi-index covariant
derivatives. For these reasons we opted to create our own software package that supports
all of the operations needed to perform algebraic manipulations in the supersymmetric set-
ting required for our project. This includes many features that would be useful for any

29

30 Design and Usage of the Tensor Algebra Software

manipulation of algebraic expressions involving tensors.
This package is written in Julia. Julia is a high-level computer language, that runs with

speeds comparable to low-level languages [23] [24]. It was designed with scientific computing
in mind, and thus includes many convenient features for those in the sciences. This language
was thus chosen as it possesses the advantages of being fast, modular, easy to program in,
and has the ability to use Unicode characters when writing code. Speed is important when
analysing long and complex expressions like those that arise in our use case, and the use
of Unicode characters is convenient in a mathematics/physics context as the user can name
variables with Greek letters, for example.

In this chapter, we will discuss how to use the package, as well as some of the design
philosophy and some runtime analysis of some of the main algorithms. Note that this package
was written entirely from scratch; everything presented in this chapter is original work.

3.1 Basics

3.1.1 Setup
To start using the package, firstly run the code

1 include("alakazam.jl")

This will automatically import all functions and initialise all internal variables appropriately.
For example, the package automatically creates variables upper and lower , which are used
to denote index positions when creating a tensor, and zero representing an instance of the
empty expression.

Note that the package has dependancies Symbolics , OrderedCollections , StatsBase ,
SymbolicUtils , and DataStructures . These should be installed first via the Julia package
manager in order for this package to run.

3.1.2 IndexSet

Next, unless your theory contains only scalars, you should define indices and index sets.
Firstly, one must create an IndexSet . Index sets are necessary, as they tell the package
which indices can be drawn upon as dummy indices, or whether a replacement pattern
(discussed later) is equivalent to an expression modulo index names. The constructor is
given by

1 IndexSet(name::String, range::Int=1, default_position::IndexPosition=upper)

Here, name is the name of the index set, range is the number of values the index ranges
over in summation (the dimension of the space the indices represent), and default_position

is the natural position an index should be found in on an object used when deciding how to
expand an expression using metrics into a canonical form. To create this object, one could
use the below code for example

3.1 Basics 31

1 flavour_indices = IndexSet("flavour", 2,lower)

2 spacetime_indices = IndexSet("spacetime", 4,lower)

3.1.3 Index

Now, one must create the indices that can be attached to tensors. The user should ensure
that they create enough indices in order to perform all algorithms (for example, many extra
indices to be used as dummy indices may be needed depending on the algorithm) required
for their problem. The constructor is given by

1 Index(name::String,index_set::IndexSet=IndexSet(""), grading::Int=0)

Here, name will be used to identify the index and should be a single unique character.
There are no restrictions on the name of this index, except that it should not use special
characters * ? _ { } [] ^ which are all reserved for pattern matching logic. This means
that unicode characters are also valid, including dotted and barred characters. Upon con-
struction, the new index will be automatically assigned to the IndexSet . In this software,
information on whether tensors commute or anti-commute is encoded in the indices. The
grading parameter can be set to 0 if the index is bosonic, and 1 if the index is fermionic.
By default, indices are bosonic. For example,

1 i = Index("i", flavour_indices, 0)

2 j = Index("j", flavour_indices)

3 α = Index("α", spinor_indices, 1)

4 β = Index("β", spinor_indices, 1)

5 αdot = Index("̇α", spinor_conj_indices, 1)

6 βdot = Index("̇β", spinor_conj_indices, 1)

3.1.4 Coordinate

If the user wishes to study tensor fields, rather than constant tensors, coordinates can be
defined. Tensors can then be specified to be a function of these coordinates. This information
is used later in computing derivatives, for example. The coordinate constructor is given by

1 Coordinate(name::String, index_set::IndexSet)

2 Coordinate(name::String, index_set::Vector{IndexSet})

Here, name is the name of the coordinate, which can be used when printing an expression.
index_set can be either a single IndexSet or a vector of IndexSet s, which allow for
coordinates to have multiple associated indices. For example, one may wish to represent the
vector of spacetime coordinates in terms of spinor indices (bispinor convention), and would
thus use two different associated spinor indices. To see the usage in practice,

32 Design and Usage of the Tensor Algebra Software

1 x = Coordinate("x", spacetime_indices)

2 θ = Coordinate("θ", [flavour_indices, spinor_indices])

3.1.5 Tensor

The package contains a hierarchy of objects that allow tensor algebra to be performed. At
the lowest level, there are Tensor objects, representing a single tensor. These single tensors
can then be multiplied together to create a TensorTerm . These terms can then be added
together to get a TensorExpression . Most functions are defined on a TensorExpression ,
but the package automatically will parse a Tensor or TensorTerm as a TensorExpression

if needed for a particular function.
To create a Tensor , one can use the constructor

1 Tensor(name::String,

2 indices::Vector{Pair{I, IndexPosition}}

3 =Vector{Pair{IndexSuperType, IndexPosition}}(),

4 function_of::Coordinate=Vector{Coordinate}(),

5 weights::Dict{String,Number}=Dict{String, Number}())

Here, name is the string that represents the tensor when doing pattern matching or
display. indices is a vector containing pairs of indices and their positions. function_of

is used to specify that the Tensor is a tensor field, dependent on the specified coordinates.
weights can be used to keep track of other arbitrary user-defined properties on the tensor,
for example, polynomial powers. For a basic usage example, consider

1 A = Tensor("A", [i => upper, j => lower], x)

This will produce the tensor field
Ai

j(x). (3.1)

It is important to stress that index order is important. There are no implicit assumptions
about symmetry in the indices, which means

Ai
j(x) 6= Aj

i(x). (3.2)

One should keep this in mind when using the package, as it will treat a tensor with a lower
then upper index, differently from a tensor with an upper then lower index (for example,
when doing algebra or pattern matching).

For totally symmetric and totally antisymmetric tensors, there exist tensor objects in the
package which are treated with these symmetries in mind when performing calculations and
simplifications. These have similar constructors to the regular Tensor type,

1 SymmetricTensor(name::String,

2 indices::Vector{Pair{I, IndexPosition}}

3 =Vector{Pair{IndexSuperType, IndexPosition}}(),

3.1 Basics 33

4 function_of::Coordinate=Vector{Coordinate}(),

5 weights::Dict{String,Number}=Dict{String, Number}())

1 AntisymmetricTensor(name::String,

2 indices::Vector{Pair{I, IndexPosition}}

3 =Vector{Pair{IndexSuperType, IndexPosition}}(),

4 function_of::Coordinate=Vector{Coordinate}(),

5 weights::Dict{String,Number}=Dict{String, Number}())

In the simplification algorithms in the software, terms involving SymmetricTensor or
AntisymmetricTensor s will be merged appropriately if the terms are equivalent up to per-
mutation of indices. AntisymmetricTensor s with repeated indices on the same level will also
be annihilated.

3.1.6 TensorTerm

Products of Tensor s are stored as a TensorTerm . To create a TensorTerm , one can use
either of the constructors

1 TensorTerm(terms::Vector{T} where {T<:TensorSuperType})

2 TensorTerm(term::TensorSuperType)

Note that upon construction, the field indices in TensorTerm will be initialised to
contain the full set of indices of each of the Tensor s it contains in terms .

However, it is more natural to simply create a TensorTerm through multiplication of two
Tensor s, for example

1 A = Tensor("A", [i => upper, j => lower], x)

2 B = Tensor("B", [j => upper, k => lower], x)

3 AB = A*B

Here, AB will be a TensorTerm , AB= Ai
j(x)B

j
k(x).

3.1.7 TensorExpression

In order to represent a full equation involving tensors, one must also be able to add tensors
and products of tensors. Such equation objects are stored as a TensorExpression . The
TensorExpression object has many possible constructors for all possible ways of creating
such an equation. However, it is more intuitive to create a TensorExpression using algebraic
operations on Tensor s.

1 A = Tensor("A", [i => upper, j => lower], x)

2 B = Tensor("B", [j => upper, k => lower], x)

34 Design and Usage of the Tensor Algebra Software

3 AB = A*B #This will be a TensorTerm

4 C = Tensor("C", [i => upper, k => lower], x)

5

6 exp=AB+2*C #This will be a TensorExpression

The above example encodes the expression

Ai
j(x)B

j
k(x) + 2Ci

k(x). (3.3)

Any type of number, or symbol from the Symbolics package, may be used as coefficients
for terms in an expression. Note that when creating a TensorExpression in this way, the
package will throw an error when trying to add together terms that have different free indices:

1 AB = Tensor("A", [i => upper, j => lower], x)

2 *Tensor("B", [j => upper, k => lower], x)

3

4 CD = Tensor("C", [i => upper, l => lower], x)

5 *Tensor("D", [l => upper, k => lower], x)

6 exp1 = AB+CD #This is ok, terms have the same free indices,

7 # even though they use different dummy indices

8

9 EF = Tensor("E", [i => upper, j => lower], x)

10 *Tensor("F", [j => upper, l => lower], x)

11 exp2 = AB+EF #This is will error, free index mismatch

12

13 GH = Tensor("G", [i => lower, j => lower], x)

14 *Tensor("H", [j => upper, k => upper], x)

15 exp3 = AB+GH #This is will error, index position mismatch

16

Note also that the tensors need not be dependent on the same coordinates.

3.1.8 Operators
Often, for a variety of applications, operators need to be used. The simplest example would
be a derivative which has a Leibniz rule action, but the package should also be able to handle
operators that act with a “homomorphism-like” action, for example O(AB) = O(A)O(B).
All operators descend from the OperatorSuperType type, which allow them to share a com-
mon set of functions. Users can extend OperatorSuperType to create their own custom
operators with other unique behaviour. All operators extending OperatorSuperType are
however assumed to possess a set of common parameters,

1 Operator(name::String, operand::{TensorExpression, Tensor, TensorTerm},

2 operator_indices::Vector{Pair{Index, IndexPosition}}

3 =Vector{Pair{Index, IndexPosition}}())

3.1 Basics 35

Here, name will be the name of the operator used in pattern matching and display. operand

can be any type of TensorExpression , Tensor , TensorTerm , or even another Operator ,
noting however that regardless of the type, operand will be internally stored (and thus must
be accessed as) a TensorExpression . An operator is free to have its own operator_indices ,
though it should be understood that an Operator object also contains a parameter operand_indices

automatically extracted from the operand , and a parameter indices which is the union of
the operand and operator indices. Note that OperatorSuperType is a subtype of TensorSuperType ,
and thus an Operator is treated as single tensor under functions. Some functions (for exam-
ple simplify algorithms) may check if the tensor in question is an operator, and recursively
call the function on its operand.

3.1.9 Typing Hierarchy
In Julia, objects can only extend abstract types. Thus, abstract “super”-types are used
that possess the necessary fields and methods that all subtypes can extend and use. This
means that if the user would like to define a new type of tensor with custom behaviour,
they cannot extend the Tensor type, but must extend TensorSuperType in order to use
any default methods defined on tensors. The current typing hierarchy in the package can be
seen in Figure 3.1.

36
D

esign
and

U
sage

of
the

T
ensor

A
lgebra

Softw
are

Figure 3.1: Type Hierarchy. Arrows denote inheritance. Cyan types cannot be extended. Blue types are abstract types and can be
extended. All types extend the red TensorSuperType .

3.2 Useful Functions and Objects 37

3.2 Useful Functions and Objects
Mathematical operators, like addition, subtraction and multiplication of tensors, and ad-
dition, subtraction, multiplication, and division by numbers (or Symbolics) all function in
the natural way. There are in addition numerous other functions implemented, specific to
tensors, in this package.

3.2.1 Tensor Appension (×)
Suppose one has tensors,

1 A = Tensor("A", [i => upper, j => lower], x)

2 B = Tensor("B", [i => upper], x)

3 C = Tensor("C", [i => lower, j => lower], x)

Then, if the user would like to multiply these tensors, this would produce an error as the
resulting expression would have an invalid index structure. If the user would like to multiply
such tensors, without performing any contractions over the indices, instead of creating new
tensors such that the indices differ, the tensor appension binary operator × can be used:

1 exp=A×B×C

which produces output A^{i*}_{*j}B^{k}C_{lm} . Indices are automatically labelled by in-
dices from the correct IndexSet and dummy indices are preserved. For example,

1 E = Tensor("E", [i => upper, j => lower, α => upper], x)

2 F = Tensor("F", [i => upper, α => lower, β => upper], x)

3 G = Tensor("G", [i => lower, i => upper, j => lower], x)

4

5 exp=E×F×G

produces output E^{i*α}_{*j*}F^{k*β}_{*γ*}G^{*l*}_{l*m} .

3.2.2 Metric

The ability to raise and lower tensor indices is a requirement for any useful sort of manipu-
lation of tensor expressions. To create a Metric , one can use the constructor

1 Metric(name::String="η",

2 indices::Vector{Pair{Index, IndexPosition}}

3 =Vector{Pair{Index, IndexPosition}}())

Note that this Metric is a subtype of SymMetricSuperType . If the user needs an an-
tisymmetric metric, for example, they can use an EpsilonTensor (see below), or extend
AntisymMetricSuperType . This Metric tensor can then be multiplied with expressions. To
perform a contraction, one can use the contract_metrics() function,

38 Design and Usage of the Tensor Algebra Software

1 contract_metrics(T::TensorExpression, typ::Type=Metric)

Note that the parameter typ can be used to selectively contract only certain kinds
of metrics depending on the application. To contract all sorts of metrics, one can use
SymMetricSuperType and AntisymMetricSuperType as typ , as all metrics are a subtype of
either one of these.

As an example of the usage, consider

1 A = Tensor("A", [i => upper, j => lower], x)

2 ηjk = Metric([j => upper, k => upper])

3

4 exp = ηjk*A

5

6 out = contract_metrics(exp)

This will have the output A^{ik} .

3.2.3 KroneckerDelta

The KroneckerDelta type in this package is a tensor that is a subtype of TotallySymmetricSuperType .
To create a KroneckerDelta , one can use the constructor

1 KroneckerDelta(indices::Vector{Pair{Index, IndexPosition}})

Note that an error will be thrown if the two indices contained in indices are not on opposite
levels, or if they are from different IndexSet s. Expressions containing contractions between
KroneckerDelta s and tensors can be simplified using the eliminate_kronecker() function, a
single argument function taking a TensorExpression . Note that when eliminate_kronecker()

is executed, KroneckerDelta s with repeated indices will be replaced by a constant de-
termined by the range parameter of the IndexSet associated with the indices of the
KroneckerDelta (ie, summation will be performed over the indices).

3.2.4 EpsilonTensor

In this package, objects of the type EpsilonTensor are a subtype of the AntisymMetricSuperType ,
and thus can be used as an antisymmetric metric if needed. It can be created via the con-
structor

1 EpsilonTensor(indices::Vector{Pair{Index, IndexPosition}})

Expressions containing contractions between EpsilonTensor s and an arbitrary tensor
can then be simplified using the eliminate_epsilon() function, a single argument function
taking a TensorExpression . This will raise and lower indices, with antisymmetry in mind.
Note that for EpsilonTensor s contacted in either or both indices, the eliminate_epsilon()

3.2 Useful Functions and Objects 39

function will replace such contractions with either a constant or a KroneckerDelta where
appropriate.

3.2.5 rename_dummies()

In Einstein summation notion, repeated indices in an expression denote summation and
are thus “dummy” indices: the name of their label is irrelevant. Often in the process of
performing algebraic manipulations, being able to recognise terms that are equivalent up
to dummy index labels is important. Thus, the built-in function rename_dummies() is able
to relabel dummy indices in an expression to some canonical ordering, which allows for like
terms to be combined. Indices are guaranteed to be taken from the correct IndexSet , and
will be replaced with the last indices from the set that are not already used in the expression
to aid the user to quickly determine which indices are dummies in a convoluted expression.

3.2.6 pop_metric()

The pop_metric() function can be used to restore all indices in an expression to their
canonical position as defined by the IndexSet . This has utility in helping to recognise
like-terms in an expression, as well as simplifying expressions with explicit symmetry or
antisymmetry in indices, as this information will be contained in the metric. This function
takes a single TensorExpression argument.

3.2.7 Weights

All Tensor s allow for a arbitrary weight properties to be defined. For example, by default,
a Tensor will be assigned a weight of 1 to a weight labelled by each Coordinate that the
Tensor is a function_of . Weights are additive, thus a weight of a TensorTerm will be
the sum of the weights of its component Tensors . Thus the aforementioned example will
determine the polynomial weight of a term for each coordinate.

The get_weighted_terms() function allows for a particular weight to be extracted from
an expression. This property can be useful for example in getting the nth degree of a
polynomial. For example,

1 x = Coordinate("x", [spacetime_indices])

2 X=Tensor("X",x)

3 exp= 2*X*X+8*X+9*X*X*X

4 get_weighted_terms(exp,"x",3)

This will have output 9*XXX . This is a simple example, however the weights allow for the
encoding of any sort of extra information, like grading (which is already kept track of) or
another numerical property associated with the tensor.

Additionally, there is also the drop_weight_above() function, which could be useful for
example to extract terms up to a certain order below (excluding) n in a Taylor series.

40 Design and Usage of the Tensor Algebra Software

3.2.8 sort()

The sort() function sorts a TensorExpression into some canonical form. By default, this
function will sort a TensorTerm such that the Tensor s are in alphabetical order. However,
the user my also define a custom sort order via custom_sort_order() , which takes a Vector

of names which sort() will sort into that specified order. Any name not found in this user-
specified order will be sorted alphabetically after the user-specified names. The sort()

function will also take grading into account. To do this, the function uses a modified bubble
sort, running in O(n2) time, for a TensorTerm with n Tensor s, and thus O(kn2) for a k term
TensorExpression . The fact that grading is important when performing swaps restricts the
usage of faster sorting algorithms.

3.2.9 sort_symmetric()

Some Tensor s have implicit symmetries in their indices, which allow for expressions to be
simplified. Currently, for totally symmetric and anti-symmetric Tensor s, the sort_symmetric()

function sorts the indices into alphabetical order, allowing for like-terms to be recognised
by other algorithms. If this function is run on any other sort of Tensor , the input will be
returned without changes.

3.2.10 simplify()

The simplify() function performs a series of other functions in a particular order to simplify
a TensorExpression .

In particular, this function:

• Contracts all metrics in the expression

• Pops all metrics in the expression

• Sorts the expression

• Eliminates EpsilonTensor s

• Renames dummy indices

• Sorts symmetric and antisymmetric tensor indices into alphabetical order

• Eliminates KroneckerDelta s

• Renames dummy indices again

• Contracts all remaining metrics

3.3 Performing Derivatives 41

This has worst case performanceO
(
kn(n+m+i2)

)
, where k is the number of TensorTerms

in the TensorExpression , m is the maximal number of Metric s in a TensorTerm in the
initial expression, n is the maximal number of non-metric Tensor s in a term in the initial ex-
pression, and i is the maximal number of indices attached a Tensor in the TensorExpression .
In practice, the algorithm will run much faster: this asymptotic runtime is for extreme patho-
logical inputs.

This particular routine was chosen to be able to successfully simplify a variety of ex-
pressions under different use cases. The user is, of course, free to define their own simplify
function with a subset of these operations, or with additional operations, more specific to
their use case.

3.3 Performing Derivatives
The motivation for the creation of this package was to be able to apply an arbitrary number
of covariant derivatives to a tensor expression in a quick and simple way.

Derivatives are handled without the need for replacement patterns in expressions. The
main idea is that the action for a particular type of derivative is defined on a set of basis
objects, and then at runtime, (if needed) the derivative is applied linearly to the expression
and the (graded) Leibniz rule is performed, and the derivative is peformed on objects on
which it is defined. To create a working derivative requires a few steps.

3.3.1 Derivative

A Derivative is a subtype of the LeibnizOperatorSuperType type. To create a Derivative ,
one can use the constructor

1 Derivative(name::String, operand::TensorTerm, coords::Vector{Coordinate},

2 operator_indices::Vector{Pair{Index, IndexPosition}}

3 =Vector{Pair{Index, IndexPosition}}())

These parameters are the same as that of the basic Operator type, with the addition
of coords . This parameter is the set of coordinates that the derivative is with respect to.
Any operand that is not a function of at least one of these coordinates will be annihilated
by the Derivative automatically. Note that the operator_indices can be any number
and combination of indices, however, it should be noted that having n indices from the
same IndexSet will not imply that this is the nth derivative with respect to the associated
coordinates, contrary to the behaviour of other software.

3.3.2 Derivative Action
Before applying the derivative to an actual expression, the action of the derivative should be
defined. To do this, one should define a Derivative with the appropriate indices, and with
respect to the appropriate coordinates, with an expression input that will be ignored (the
expression here is not used to define the action). For example, to create a spatial derivative,

42 Design and Usage of the Tensor Algebra Software

1 spacetime_indices = IndexSet("spacetime", 4)

2 a = Index("a", spacetime_indices, 0)

3 x = Coordinate("x", spacetime_indices)

4

5 spatial_deriv=Derivative("∂",zero, [x], [a => lower])

Note that each different type of derivative should be given a different name. Now, for
example, suppose one has a tensor

1 b = Index("b", spacetime_indices, 0)

2 X = Tensor("X", [b => upper], x)

Then, to define the action of our derivative on this tensor, one can use the add_derivative_action()

function

1 add_derivative_action(derivative_operator::DerivativeSuperType,

2 operand::TensorSuperType,

3 result<:Union{TensorSuperType,TensorExpression,TensorTerm})

Here, derivative_operator is the Derivative we’d like to define the action of, operand is
the basis Tensor we’d like to define the action on, and result is the outcome of applying
the derivative to this object. Note that care should be taken to ensure that the inputs to this
function have the correct indices. The index names used are not important - this function
simply encodes what behaviour to perform when tensors of a particular index structure are
encountered. In other words, registering the action of Di

α(Ai) will allow expressions like
Dj

α(Aj) and Di
β(Ai) to be computed, but not Di

α(Aj), nor Dα
i(A

i), Diα(Ai) or Di
α(Ai).

Thus, it is recommended to register the derivatives in some sort of canonical form, and then
use metrics to move indices to the canonical positions before applying the action.

Returning to our example, we could thus define the derivative action

1 add_derivative_action(spatial_deriv,X,KroneckerDelta([a=>lower,b=>upper]))

This defines the action of the derivative on X , for any pattern of indices of X and
spatial_deriv .

3.3.3 product_rule()

An important part of taking derivatives is the Leibniz product rule. For operators of the
LeibnizOperatorSuperType , as TensorExpresion will be created by the product_rule()

that respects the graded Leibniz rule. This is particularly useful when working with fermionic
objects.

3.3.4 Derivative Application
Once the action of a derivative on the desired tensors has been specified, applying the
derivative is simple. Continuing from the above example, suppose we have the expression

3.3 Performing Derivatives 43

1 eq=(SymmetricTensor("A", [a => lower, b => lower])

2 *Tensor("X", [a => upper], x)*Tensor("X", [b => upper], x)

3 +Tensor("B", [a => lower])*Tensor("X", [a => upper], x)

4 +Tensor("C"))

This represents a quadratic equation in N-D. Then, to compute the derivative of this
expression as defined before, we can execute the code

1 first_deriv=Derivative("∂", eq, [x], [c => lower])

2 result=apply_derivative(first_deriv)

3 result=simplify(result)

This has the output

1 2*A^{a*}_{*c}X_{a}+B_{c}

as expected: a linear equation in each direction xc.

3.3.5 Covariant Derivatives
Often times when working with field theories, covariant derivatives must be used to account
of the curvature of the underlying spacetime, and fields. For theories with many connection
terms, this expression for the derivative may be lengthy. To improve performance and
readability, this package allows the user to define a Derivative operator that can later be
expanded and replaced by the full covariant derivative at a later step in computation. This
makes things like the Leibniz rule faster to run, as well as makes the code more readable.
To see this in action, consider the following code. Suppose we have defined two different
derivative operators, corresponding to two terms of the covariant derivative for some kind
of gauge theory (loosely speaking),

1 x = Coordinate("x", spacetime_indices)

2 θ = Coordinate("θ", internal_space_indices)

3 X = Tensor("X", [b => upper], x)

4 Θ = Tensor("Θ", [j => upper], θ)

5 spatial_deriv=Derivative("∇",zero, [x], [a => lower])

6 connection_deriv=Derivative("∂",zero, [θ], [i => lower])

7 add_derivative_action(spatial_deriv,X,KroneckerDelta([a=>lower,b=>upper]))

8 add_derivative_action(connection_deriv,Θ,KroneckerDelta([i=>lower,j=>upper]))

9

10 covar_expansion=spatial_deriv

11 -2*im*Tensor("A",[a => lower, i => upper])*connection_deriv

12

Rather than using this full derivative in computations, one can instead apply just a single
derivative operator,

44 Design and Usage of the Tensor Algebra Software

1 exp=Derivative("D",X*Θ, [x,θ], [c => lower])

The user can then perform whatever manipulations that are required. Once the user
wants to compute the derivative, they can define a derivative representing which derivative
they’d like to expand, then use the expand_derivative() function,

1 covar=Derivative("D",zero, [x,θ], [a => lower])

2

3 out=expand_derivative(exp,covar,covar_expansion)

Note that the free indices used in the patterns covar and covar_expansion must match
with each other in order to have a valid pattern, but they do not need to use the same
free indices as the actual expression - the function expand_derivative() finds derivatives
in exp that match the derivative name and index structure of covar modulo index names,
and then expands the derivative using covar_expansion as a blueprint.

3.4 Pattern Matching and Replacements
The most powerful part of the software is the ability to make algebraic substitutions in
expressions. The software employs its own syntax to do this, and will be explained below.

3.4.1 Usage
To make a replacement, one must first search an expression to find the tensor(s) that should
be replaced. Patterns in this software allow the user to create expressions with arbitrary
wildcards, that allow the user to find very specific (or very general) matches. This is most
simply explained through examples. For any type of wildcard object, whether it be a Tensor

or Index , the object’s name must start with a ?, to denote the object is a wildcard. Sub-
sequent characters after the ? can be used to denote different wildcards. For example, a
pattern like ?H?H would search specifically for tensors in an expression that are squared
(two tensors of the same name), whereas ?G?H will match any pair of tensors (with same
or different name).

Let us now consider some basic usage. To create a basic pattern one can create a
DummyPatternTensor object,

1 H=DummyPatternTensor("?H",[n => upper, m => upper, m => lower, α => lower])

Note that even though H is a wildcard, the indices on H are not, and thus this pattern
will only match tensors with these exact index names (modulo summation dummy index
names).

To instead specify these indices as wildcard characters, one can use DummyPatternIndex

objects,

3.4 Pattern Matching and Replacements 45

1 G = DummyPatternTensor("?G", [i => upper, k => upper, j => lower,

2 DummyPatternIndex("?γ") => lower], x)

Here, the last index in the pattern is a wildcard index and will match with any index in
the 4th position, in the lower slot of a tensor.

To see how to use this, let us consider a TensorTerm representing our original expression,
a TensorTerm representing the pattern to look for, and a TensorTerm for what we should
replace the found pattern for. Note that the pattern and replacement must be of the type
TensorTerm .

1 J = Tensor("F", [i => upper, k => upper, j => lower, β => lower], x)

2 Z = Tensor("Z", [i => upper, k => upper, j => lower, β => lower], x)

3 K = Tensor("K", [n => upper, m => upper, m => lower, α => lower], θ)

4 L = Tensor("L", [q => upper, p => upper], θ)

5

6 exp1=K*J*Z*L

7

8 G = DummyPatternTensor("?G", [i => upper, k => upper, j => lower,

9 DummyPatternIndex("γ") => lower], x)

10

11 pat = J*G

12

13 rep= TensorTerm(G)

14

15 out=substitute_terms(exp1,pat1,rep,true)

16

This will have output -Z^{ik**}_{**jβ}K^{nm**}_{**mα}L^{qp} . Indeed, the pattern
specified here looks for occurances of the Tensor J , and any tensor ?G with the specified
indices. Note that expressions are assumed to be (anti)commutative, and thus J and ?G
need not be next to eachother in an expression in order for a match to be found. Indeed,
?G matches with Z (and ? γ with β), and thus the substitute_terms() function makes
the replacement JZ → Z. This Z is then (anti)commuted to the front of the expression,
and the new resulting expression is returned. Note that the last input argument of the
substitute_terms() is a boolean which dictates if the replacement should be repeatedly
applied until no matches are found.

3.4.2 Explanation of the Algorithm
In general, pattern-matching problems such as this are computationally difficult. Indeed, the
fact the expressions are (anti)commutative means that the usual improvements in runtime
gained in text matching algorithms from techniques like preprocessing cannot be performed,
as the expression has no definite order. Preprocessing usually reduces the time complexity of
pattern matching in text significantly - for algorithms like KMP the runtime reduces to O(n+
m) for an expression of n characters and a pattern of m characters. It should be noted that

46 Design and Usage of the Tensor Algebra Software

the naive brute-force approach to pattern matching for a(n) (anti)commutative expression
and (anti)commutative pattern is computationally intensive, running in exponential time.
In fact, this problem is equivalent to a set covering problem, which is known to be NP-
complete. Thus, the naive approach is not adequate for our purposes. This means that
algorithms must be implemented in a clever fashion lest they run in exponential time. Thus,
particular care was taken in designing this pattern-matching algorithm in order to reduce
the computational complexity.

This algorithm is the most complex feature of the package. Our algorithm runs in a few
main steps, following a dynamic programming approach to solving the problem. For a tensor
term of n tensors, and a pattern of m tensors,

1. Construct Histograms: Firstly, the expression and the pattern are converted to
histograms, by firstly counting the number of occurrences of each tensor with a given
name, then inverting the histogram so that the result has keys denoting frequencies,
and values that are a set of tensor names (as well as their associated positions in the
original expression). This allows for quick comparison between the pattern and the
expression to find possible candidates for matches based on frequency. This step runs
in O(n+m) (amortised) time.

2. Find a Match: The algorithm then recursively checks for matches, by checking com-
binations of tensors with the correct frequency. If there is a single frequency in the
pattern, then two cases are considered

• One type of tensor in the single pattern frequency: If there is only one type of
tensor (name) in the pattern, we loop through all frequencies in the expression
histogram where the frequency of the pattern is less than the expression frequency
(a requirement for a match). For each of these valid expression frequencies, the
algorithm loops over the associated tensors. If the names match (or if the tensor in
the pattern is a dummy), the indices are checked (baring in mind any wildcards
from DummyPatternIndices . If the pattern does not match, the next tensor is
checked. Otherwise, a match is registered, and the function returns true, along
with information about which wildcards match to which index/tensor.

• Many types of tensors in the single pattern frequency: The algorithm runs simi-
larly, by first calling itself on the expression, but on only the first type of tensor
in the pattern. This runs the algorithm and returns information about wildcards.
If a match was found, it is removed from the pattern, and the rest of the pattern
is now checked against the expression, now with the appropriate wildcards fixed.
If no match is found at any step, then we return up a level in the algorithm and
consider the next possible match of the pattern tensors with the expression (as
perhaps there is a match that exists with a different set of wildcard matches). In
this sense, the algorithm is doing a greedy search for matches.

Otherwise, if there are multiple frequencies in the pattern histogram, we loop over the
frequencies and recursively call the algorithm on the single frequency case, and record
information about the wildcards to use at each step. Note that if the highest frequency
in the pattern has no matches with the expression, the search can terminate in the

3.5 Lightcone Coordinates 47

negative. In the worst case, this step runs in O(nm2) time - but in reality, it may
be faster as this asymptotic bound assumes that in the worst case all tensors in the
pattern have the same frequency.

3. Make the replacement: If a match is found, the replacement must be made. Firstly,
the grading due to rearranging terms to make the replacement is computed. Then the
replacement must be constructed, by creating new tensors given information about the
wildcards. In total, this runs in roughly O(nm) time.

To summarise, this algorithm runs in O(nm2) total, and thus at absolute worst O(n3) time
(the pattern length cannot exceed the expression length lest the algorithm terminates). In
reality, it is likely that m is much less than n in standard operation. Thus, we have effectively
written an algorithm that is linear in the expression length, and quadratic in the pattern
length - a vast improvement on the exponential runtime of the naive approach. Bare in
mind that these are asymptotic bounds, and that the actual performance will be much
faster, an advantage gained by both the use of the histograms to rule out many unnecessary
comparisons. It may be possible to improve the runtime of the algorithm slightly by using
mimoisation techniques, however, it is unlikely as the algorithm should by construction avoid
repeated computations.

3.5 Lightcone Coordinates
In usual operation, repeated indices denote summation. When dealing with lightcone coor-
dinates in 2D, the indices ± can be attached an arbitrary number of times to an object, and
do not denote summation. This means special treatment is needed for lightcone coordinates.

For this reason, the software comes with a predefined set of lightcone coordinates, which
can be accessed by running include("lightcone.jl") ,

1 lightcone_indices = IndexSet("lightcone", 2,lower)

2 ± = Index("±", lightcone_indices, 1)

3 ∓ = Index("∓", lightcone_indices, 1)

4 p = Index("+", lightcone_indices, 1)

5 m = Index("-", lightcone_indices, 1)

These indices are treated specially. These indices should be used in conjunction with
another IndexSet ; this 2nd “working set” should be used for algebraic manipulations, and
then replaced with the lightcone coordinates at the end. To see this in action, consider a
simple expression

1 a = Index("a", spacetime_indices, 1)

2 b = Index("b", spacetime_indices,1)

3 c = Index("c", spacetime_indices,1)

4

5 x = Coordinate("x", [spacetime_indices, spacetime_indices])

6 θ = Coordinate("θ", [spacetime_indices])

48 Design and Usage of the Tensor Algebra Software

7

8

9 field=Tensor("θ",[c=>upper],θ)

10 *Tensor("S",[c => lower, a =>lower, b => lower], x)

11 Dfield=Derivative("∇",field, [x], [i => lower, j => lower])

12 out=apply_derivative(Dfield)

The result here will be in terms of spacetime_indices ; indeed, it has output
θ^{c}∇_{ij}[[S_{cab}]] . To write the result in terms of lightcone_indices ,

1 res=to_lc_expression(out,Dict(a=>m,b=>m,i=>p))

This defines a mapping of the free indices of the expression to lightcone_indices , and
automatically expands sums over dummy indices. The result of this code would thus be

θ^{+}∇_{++}[[S_{+--}]]+θ^{-}∇_{++}[[S_{---}]] .
For chiral theories, we further have the function to_chiral_part() which takes an ex-

pression and a lightcone index p or m , and returns the expression with only p or m indices
respectively.

3.6 Superspace
The ability to perform integration over superspace is important for the construction of many
types of expressions. Fortunately, by virtue of the properties of Grassmann numbers, integra-
tion behaves the same as differentiation over superspace. We can thus perform Grassmann
integration over our expressions without much extra effort. We have defined convenient
functions and variables relevent to superspace in its own file. To use these, one can firstly
run include("superspace.jl") .

The main part of this extension is the project_component() function. This takes many
inputs,

1 project_component(exp::TensorExpression, thet::Coordinate,

2 derivinds::Vector{Pair{Index,IndexPosition}}, theta_weight::Integer,

3 theta_bar_weight::Integer, thet2::Coordinate=nothing,

4 deriv2inds::Vector{Pair{Index,IndexPosition}}=nothing,

5 theta1lev::Integer=1, theta2lev::Integer=1)

Here, exp is the expression to integrate (differentiate), thet is the coordinate to integrate
with respect to (for example, if the user has parametrised superspace in terms of complex
Grassmann numbers), derivinds encode the index structure of the relevant superspace
derivative, theta_weight is the number of times to integration before setting θ = 0, and
likewise for theta_bar_weight . There are also optional arguments for integrating over a
2nd types of Grassmann variable in the case where superspace is parametrised by complex
Grassmann numbers. Finally, since there are two independent θ2 structures in most of the
theories we consider, we have theta1lev and theta2lev to dictate which θ2 to integrate
with respect to.

4
Construction of TT̄ and TT̄-like Terms for

Conformal Theories

4.1 General Approach and Procedure
For a theory possessing the symmetries of a particular (super-)Lie group, the generators of
the group are conserved charges by Noether’s theorem. In an ordinary theory, momentum
is a conserved charge, and can be expressed as the spatial integral of a conserved current,

P µ =

∫
d3xT 0µ. (4.1)

Analogously, the supercharge can be expressed as the integral

Qi
α =

∫
d3xS0i

α , (4.2)

of the so-called supersymmetry current Sµi
α . A general theory may possess additional con-

served charges. Indeed, it is possible to non-trivially extend the super-Poincaré algebra with
(for example, in 4D N = 1) [2]

{Qα, Qβ̇} = 2σµ

αβ̇
(Pµ + Zµ)

{Qα, Qβ} = σµν
αβZµν , (4.3)

where Zµ and Zµν are known as brane charges, and are nonzero for strings and domain walls
respectively. Note that these are not central charges - they do not commute with the Lorentz
generators. These charges are usually infinite, and thus it is more meaningful to examine
the local version,

{Qβ̇, Sαµ} = 2σν
αβ̇
(Tνµ + Cνµ) + ...,

49

50 Construction of TT̄ and TT̄-like Terms for Conformal Theories

{QβSαµ} = σνρ
αβCνρµ + ..., (4.4)

where Cµν and Cµνρ are known as brane currents. The algebra implies that these currents
live inside a supercurrent multiplet, along with Sαµ and Tµν .

In this thesis, we aim to describe this supercurrent multiplet. In principle, in the same
way the stress-energy tensor can be determined from coupling to gravity, the supercurrent
can be determined from coupling to the supergravity superfield [20]. However, for the theories
that we would like to consider, the supergravity formulation is not well-understood.

Thus we take an alternate approach, using superspace techniques.
We assume, firstly, that the super-Poincaré algebra exists and has associated local cur-

rents. We in particular assume that the stress-energy tensor and the supersymmetry current
exist, and are conserved. We know from the fact that the currents transform non-trivially
under supersymmetry, that they must close to form a supercurrent multiplet. We also as-
sume for physical reasons that the stress-energy tensor is the highest spin (2) current in
the multiplet. Since the supercurrents permit a finite order superfield expansion in super-
space, we can thus determine relationships between the component currents by imposing
consistency conditions. We thus aim to construct a, in a sense minimal, indecomposable
supercurrent multiplet that obeys these requirements.

In 2D, it is still unknown what the most general supercurrent multiplet obeying these
requirements are for N = (0, 4) and N = (4, 4), as well as 4D N = 2.

In order to work towards a classification of the supercurent for these theories, we will
work first in the conformal case. The conformal theory is much simplified, and possesses a
traceless stress-energy tensor. Many of the currents in addition will be constrained to be
zero thanks to strong constraints on the algebra.

Using these conformal constraints, we will use the software that we developed to deter-
mine a set of constraint equations on the component fields of the supercurrent multiple after
using superspace to perform a superfield expansion. We will then solve these constraints,
determining the form of the multiplet.

Once the multiplet is solved, we can then construct the supercurrent-squared term, and
integrate over superspace to obtain the operator defined on spacetime. We can then compare
this to TT̄. We expect that this operator should be equivalent TT̄, on-shell and up to a
total derivative in the 2D case, and possibly different in the 4D, inline with the findings for
other theories in [3] [4] [5] [6] [7]. For the conformal theory, this should consist of only one
term, T µνTµν , and no T µ

µ = Θ2 term, as the stress-energy tensor is traceless for conformal
theories.

Note that in this chapter, we present results for 2D N = (0, 2) and N = (2, 2) which
are already known, along with results for 2D N = (0, 4) and N = (4, 4), 4D N = 2. We
include these known results as a verification of the correct performance of our software and
our general procedure.

4.2 2D N = (0, 2) Supersymmetry
As stated earlier, in two dimensions, it is convenient to work in lightcone coordinates. We
will do so for all 2D theories for the remainder of this thesis.

4.2 2D N = (0, 2) Supersymmetry 51

For N = (0, 2) supersymmetry, we need only consider a superfield expansion in one of
either Grassman numbers with + or − indices. Without loss of generality, we will consider
the + chiral theory. Thus, we consider 2D N = (0, 2) superspace parameterised by xM =

(x±±, θ+, θ
+
), where θ+ is a complex Grassmann coordinate and θ̄+ is its complex conjugate.

The spinor covariant derivatives are given by

D+ =
∂

∂θ+
− i

2
θ̄+∂++, D+ = − ∂

∂θ̄+
+

i

2
θ+∂++, (4.5)

and obey the anti-commutation relations{
D+,D+

}
= i∂++. (4.6)

It is known that the supercurrent is described in terms of a vector supercurrent S++ and a
spin-2 supercurrent T−−−− [4]. In general we can expand these as a supercurrent expansion

(4.7)S++(x, θ
+, θ

+
) = j++(x) + θ+S+++(x)− θ

+
S+++(x) + θ+θ

+
T++++(x)

and

(4.8)T−−−−(x, θ
+, θ

+
) = T−−−−(x) + θ+B+−−−−(x)− θ

+
B+−−−−(x) + θ+θ

+
C++−−−−(x)

Then, the superconformal current constraint is [4]

∂−−S++ = 0, (4.9)
and

D+T−−−− = D+T−−−− = 0, (4.10)
Which immediately yields for S++

∂−−T++++ = 0, (4.11)

∂−−S+++ = 0, (4.12)

∂−−S+++ = 0, (4.13)
and

∂−−j++ = 0. (4.14)
And for T−−−−,

C++−−−− = 0, (4.15)

B+−−−− = 0, (4.16)

∂++T−−−− = 0. (4.17)

52 Construction of TT̄ and TT̄-like Terms for Conformal Theories

Then, the supercurrent-squared term is given by [4]

OT 2 = T−−−−S++, (4.18)

and then computing the projection

OT 2 =

∫
dθdθ̄OT 2

∣∣∣
θ=θ̄=0

, (4.19)

yields, after imposing the equations of motion,

(4.20)OT 2 = T++++T−−−−.

Thus, in the conformal case, the supersymmetric supercurrent squared operator precisely
corresponds to T T̄ for a traceless stress-energy tensor as would be expected for a conformal
theory. This matches the known result, and thus our approach successfully reproduces the
correct result.

4.3 2D N = (2, 2) Supersymmetry

In flat 2D N = (2, 2), we parametrise superspace by xM = (x±±, θ±, θ
±
), where θ± is a

complex Grassmann coordinate and θ̄± is its complex conjugate. Note that the covariant
derivatives are given by [5]

D± = ∂± − i

2
θ
±
∂±± D± = −∂± +

i

2
θ±∂±±, (4.21)

and satisfy {
D±, D̄±

}
= i∂±±, (4.22)

with all other (anti-)commutators vanishing.
It is known that for this theory, there exists two supercurrents, S++ and S−−, which we

collectively denote S±±, that contain the stress-energy tensor and supersymmetry current
[5]. The most general form of these supercurrents are given by a real vector superfield with
superfield expansion

S±±(x, θ
+, θ−, θ

+
, θ

−
) = j±±(x) + θ+S+±±(x) + θ−S−±±(x)− θ

+
S+±±(x)− θ

−
S−±±(x)

+ θ+θ
+
T++±± + θ+θ

−
T+−±±(x) + θ−θ

+
T−+±±(x)

+ θ−θ
−
T−−±±(x)(x) + θ+θ−K+−±±(x)− θ

+
θ
−
K+−±±(x)

+ θ+θ−θ
+
H+−+±±(x) + θ+θ−θ

−
H+−−±±(x)− θ

+
θ
−
θ+H+−+±±(x)

− θ
+
θ
−
θ−H+−−±±(x) + θ+θ−θ

+
θ
−
F+−+−±±(x)

(4.23)

We will then impose the conformal constraint on the supercurrent,

D±S∓∓ = 0, D±S∓∓ = 0. (4.24)

4.4 4D N = 2 Supersymmetry 53

It should be noted here that there is no implicit Einstein summation over the lightcone
indices, contrary to usual notation.

Applying these constraints yields a set of constraints on each component of the supercur-
rent expansion. By using the software we developed, we can easily compute the constraints
for the theory, and then solve them. This in fact yields (with analogous equations for the
complex conjugates),

S±∓∓ = T±±∓∓ = T±∓±± = K+−±± = H+−+±± = H+−−±± = F+−+−±± = 0

∂±±j∓∓ = ∂±S∓∓∓ = ∂±±T∓∓∓∓ = 0 (4.25)
This reduces the supercurrent to consist of entirely all left-moving (annihilated by ∂++) or
all right-moving (annihilated by ∂−−) currents, of the form

(4.26)S±±(x, θ
+, θ−, θ

+
, θ

−
) = j±±(x) + θ±S±±±(x)− θ

±
S±±±(x) + θ±θ

±
T±±±±(x),

where the indices are chosen to be either all +, or all −.
This quite easily allows for the construction of the supercurrent squared operator by

firstly taking
OT 2 = S++S−−, (4.27)

and then computing the projection

OT 2 =

∫
d2θd2θ̄OT 2

∣∣∣
θ=θ̄=0

. (4.28)

This yields

(4.29)OT 2 = T++++T−−−−.

Thus, in the conformal case, the supersymmetric supercurrent squared operator precisely
corresponds to T T̄ for a traceless stress-energy tensor as would be expected for a conformal
theory. This again matches the known result [5].

4.4 4D N = 2 Supersymmetry
The structure of the N = (4, 4) supersymmetry is not well-understood in 2D. However,
the structure of 4D N = 2 supersymmetry is better understood. There is also a strong
relationship between these two categories of theories, as explored in [16]. We will thus begin
by understanding the supercurrent in 4D N = 2 supersymmetry, and thus create the TT̄-like
supercurrent-squared term that exists in this theory, which we can later, in future works,
relate to the 2D theory via dimensional reduction and truncation.

In 4D N = 2 supersymmetry, the algebra contains generators Qi
α and Q̄β̇

j , where i, j ∈
{1, 2} are isospin (SU(2)) flavour indices, and α ∈ {1, 2} and β̇ ∈ {1̇, 2̇} are spinor indices
in for the fundamental and antifundamental representations respectively. Working in the
superspace formalism, these generators have associated complex Grassmann superspace co-
ordinates θαi , θ̄j

β̇
, and thus superspace coordinates zM = (xa, θαi , θ̄

i
α̇), a ∈ {0, 1, 2, 3}. This

has associated superspace covariant derivatives

54 Construction of TT̄ and TT̄-like Terms for Conformal Theories

Di
α =

∂

∂θαi
− i
(
σb
)β̇
α
θ̄i
β̇
∂b, D̄α̇

i =
∂

∂θ̄iα̇
− i
(
σb
)α̇
β
θβi ∂b, ∂a =

∂

∂xa
. (4.30)

The relevant algebra for this theory can be found in Appendix A, as well as some useful
rules and definitions regarding Grassmann variables and their contractions and complex/her-
mitian conjugation.

Then, the most generic form of the supercurrent is given by

J = j(x) + θαi ψ
i
α(x) + θijF

ij(x) + θαj θ
ijGiα(x) + θ4H(x) + θαj θ

k

α̇K
jα̇
kα(x) + θαi θ

jk
Li
jkα(x)

+ θαi θ
k

β̇θjkM
β̇ij
α (x) + θαi θ

4
N i

α(x) + θijθ
kl
P ij
kl (x) + θijθ

l

α̇θklQ
ijkα̇(x) + θijθ

4
Rij(x)

+ θαj θ
ijθ

l

α̇θlkS
kα̇
iα (x) + θαj θ

ijθ
4
Eiα(x) + θ4θ

4
V (x) + θ

i

α̇ψ
α̇

i (x) + θ
jk
F jk(x)

+ θ
j

α̇θjkG
kα̇
(x) + θ

4
H(x) + θ

i

α̇θjkL
jkα̇

i (x) + θ
i

α̇θ
β
kθ

jkM
α̇

βij(x) + θ
i

α̇θ
4N

α̇

i (x)

+ θ
ij
θαl θ

klQijkα(x) + θ
ij
θ4Rij(x) + θ

j

α̇θijθ
4E

iα̇
(x) + θαβΩαβ(x) + θα̇β̇Ω

α̇β̇
(x)

+ θαβθ
i

α̇A
α̇
iαβ(x) + θαβθ

jk
Bjkαβ(x) + θαβθ

j

α̇θjkU
α̇k
αβ (x) + θαβθ

4
Cαβ(x)

+ θαβθα̇β̇T
α̇β̇
αβ (x) + θα̇β̇θ

α
i A

α̇β̇i

α (x) + θα̇β̇θijB
α̇β̇ij

(x) + θα̇β̇θ
α
j θ

ijU
α̇β̇

iα (x) + θα̇β̇θ
4C

α̇β̇
(x).

(4.31)

We seek constraints on this supercurrent to simplify the expression (4.31). To do so, we
impose the conformal constraints[25]

Dα(iDj)
α J = 0, D̄α̇

(iD̄j)α̇J = 0. (4.32)
We can thus compute these derivatives of our supercurrent to generate a set of constraints
on the field content. Indeed, one can compute these derivatives to obtain another superspace
expansion, and then equate each coefficient function (which will be some combination of our
fields and their derivatives) of the expansion to zero.

In this 4D N = 2 case, the resulting superfield equation is many, many, pages long - too
long to detail here. However, after performing these computations, analysing the resulting
equation term by term in powers of θ yields a set of constraints.

After an arduous calculation to solve each of these constraint equations, notably, many
fields are constrained to be zero. Indeed,

F ij(x) = Giα(x) = Rij(x) = H(x) = N i
α(x) = Bjkαβ(x) = Cαβ(x)

=Mα
β̇ij(x) = Li

jkα(x) = Uαβ
α̇k(x) = Qijkα(x) = Eiα(x) = Siα

kα̇(x) = V (x) = 0. (4.33)
The remaining currents obey the relations

P klsr(x) =
1

8
εk(r|εl|s)�j(x), (4.34)

∂α̇
α�j(x) = 0, (4.35)

∂βα̇ψs
α̇(x) = 0, (4.36)

4.4 4D N = 2 Supersymmetry 55

∂α̇
αT α̇β̇

αβ(x) = 0, (4.37)

∂α̇
βΩα̇β̇(x) = 0, (4.38)

∂α̇
αKαsr

α̇(x) = 0, (4.39)

∂α̇
αArα

α̇β̇(x) = 0, (4.40)

where we define ∂µµ̇ ≡ σaµ
µ̇∂a, and � ≡ ∂µµ̇∂

µ̇
µ . Analogous equations hold for the complex

conjugate fields.
The supercurrent then reduces to

(4.41)J = j(x) + θαi ψ
i
α(x) + θαj θ

k

α̇K
jα̇
kα(x) +

1

8
θijθ

ij
�j(x) + θ

i

α̇ψ
α̇

i (x) + θαβΩαβ(x)

+ θα̇β̇Ω
α̇β̇
(x) + θαβθ

i

α̇A
α̇
iαβ(x) + θαβθα̇β̇T

α̇β̇
αβ (x) + θα̇β̇θ

α
i A

α̇β̇i

α (x).

Now that we have an expression for the supercurrent, we can construct the supercurrent
squared operator by firstly taking

OT 2 = JJ , (4.42)

and then computing the projection

OT 2 =

∫
d4θd4θ̄OT 2

∣∣∣
θ=θ̄=0

. (4.43)

This yields (after applying the equations of motion)

(4.44)

OT 2 = T α̇β̇
αβT α̇β̇

αβ + P ij lkP ij lk

= T α̇β̇
αβT α̇β̇

αβ +
3

64
(�j)2

= T α̇β̇
αβT α̇β̇

αβ +
3

64
∂α̇α(�j∂

α
α̇j).

Restoring this expression to spacetime indices, we have the result

OT 2(x) = T ab(x)T ab(x) + total derivatives. (4.45)

This is a novel result, and shows that at least in the conformal case, the 4D N = 2
supercurrent squared operator reduces to the TT̄ operator up to a total derivative and
equations of motion. However, this result is not expected to extend to the non-conformal
case, as discussed earlier in Section 2.6.

56 Construction of TT̄ and TT̄-like Terms for Conformal Theories

4.5 2D N = (0, 4) Supersymmetry
For 2D N = (0, 4) supersymmetry, superspace can be parametrised by four real grassmann
coordinates, which we will denote θ+ia, with SU(2) indices i = {1, 2}, a = {1, 2}.

These have associated covariant derivatives

Dia
+ =

∂

∂θ+ia
+
i

2
θ+ia∂++, (4.46)

satisfying

{Dia
+ , D

jb
+} = iεijεab∂++ , [∂±±, D

ia
+] = 0. (4.47)

Then, we posit that the supercurrent multiplet for 2D N = (0, 4) theories can be de-
scribed by a scalar supercurent S and spin-2 supercurrent T−−−−. The most general form
such superfields can take are

(4.48)S(x, θ+ia) = j(x) + θ+iaψ
ia
+ (x) + θ+iaθ

+i
b F

ab
++(x) + θ+iaθ

+
j
aKij

++(x)

+ θ+a
j θ+iaθ

+i
b S

jb
+++(x) + θ+iaθ

+i
b θ

+a
j θ+jbT++++(x),

and

(4.49)T−−−−(x, θ
+
ia) = T−−−−(x)+θ

+
iaA

ia
+−−−−(x)+θ

+
iaθ

+i
b B

ab
++−−−−(x)+θ

+
iaθ

+
j
aCij

++−−−−(x)

+ θ+a
j θ+iaθ

+i
b G

jb
+++−−−−(x) + θ+iaθ

+i
b θ

+a
j θ+jbH++++−−−−(x).

For the conformal theory, these supercurrents obey

∂−−S = 0, (4.50)

and

Dia
+T−−−− = 0. (4.51)

Note that thanks to the algebra of covariant derivatives,

Dia
+T−−−− = 0 =⇒ {Dia

+ , D
jb
+}T−−−− = iεijεab∂++T−−−− = 0 =⇒ ∂++T−−−− = 0. (4.52)

Applying the above constraints to the superfields yields the trivial conservation con-
straints

∂−−j(x) = 0, (4.53)

∂−−ψ
ia
+ (x) = 0, (4.54)

∂−−F
ab
++(x) = 0, (4.55)

4.5 2D N = (0, 4) Supersymmetry 57

∂−−K
ij
++(x) = 0, (4.56)

∂−−S
jb
+++(x) = 0, (4.57)

∂−−T++++(x) = 0, (4.58)

as well as the equations

∂++T−−−−(x) = 0, (4.59)

Cij
++−−−−(x) = 0, (4.60)

Bab
++−−−−(x) = 0, (4.61)

Aia
+−−−−(x) = 0, (4.62)

Gia
+++−−−−(x) = 0, (4.63)

and

H++++−−−−(x) = 0. (4.64)

Now that we have an expression for the supercurrent, we can construct the supercurrent
squared operator by firstly taking

OT 2 = ST−−−−, (4.65)

and then computing the projection

OT 2 =

∫
d4θOT 2

∣∣∣
θ=θ̄=0

(4.66)

This yields, after applying the equations of motion,

OT 2 = T++++T−−−−. (4.67)

This novel result shows that indeed, at least in the conformal case, the supercurrent-
squared operator reduces to the TT̄ operator for the 2D N = (0, 4) theory.

58 Construction of TT̄ and TT̄-like Terms for Conformal Theories

4.6 2D N=(4,4) Supersymmetry

For N = (4, 4), consider superspace parameterised by 8 Grassmann coordinates, θ+I and θ−A ,
where I = {1, 2, 3, 4}, A = {1, 2, 3, 4} are SO(4) indices.

These have associated covariant derivatives

DI
+ =

∂

∂θ+I
+
i

2
θ+I∂++, (4.68)

and
DA

− =
∂

∂θ−A
+
i

2
θ−A∂−−. (4.69)

One can see that these obey

{DI
+, D

J
+} = iδIJ∂++, (4.70)

and
{DA

−, D
B
−} = iδAB∂−−, (4.71)

while commuting with ∂±±.
Then, consider the supercurrents

(4.72)R(x, θ+I , θ
−
A) = r(x) + θ+I ψ

I
+(x) + θ+I θ

+
J ε

IJF++(x) + θ+I θ
+
J θ

+
Kε

IJKS+++(x)

+ θ+I θ
+
J θ

+
Kθ

+
L ε

IJKLT++++(x) + θ−A terms and cross terms

(4.73)L(x, θ+I , θ
−
A) = l(x) + θ−Aψ

A
−(x) + θ−Aθ

−
Bε

ABF−−(x) + θ−Aθ
−
Bθ

−
Cε

ABCSABC
−−−(x)

+ θ−Aθ
−
Bθ

−
Cθ

−
Dε

ABCDT−−−−(x) + θ+I terms and cross terms

to which we apply the conformal constraints

DA
−R = 0, (4.74)

and
DI

+L = 0. (4.75)

From these constraints, by virtue of the algebra, one then has

∂−−R = 0, (4.76)

∂++L = 0, (4.77)

which yields conservation equations for each term in the supercurrent expansions. Further,
one has then

DA
−R =

∂

∂θ−A
R+

i

2
θ−A∂−−R =

∂

∂θ−A
R = 0. (4.78)

4.6 2D N=(4,4) Supersymmetry 59

Thus, all terms in R that are proportional to θ−A are constrained to be zero, and similarly, all
terms in L that are proportional to θ+I vanish. Thus, thus, L and R consist of only purely
left/right moving components,

(4.79)R(x, θ+I) = r(x) + θ+I ψ
I
+(x) + θ+I θ

+
J ε

IJF++(x)

+ θ+I θ
+
J θ

+
Kε

IJKS+++(x) + θ+I θ
+
J θ

+
k θ

+
l ε

IJKLT++++(x)

(4.80)L(x, θ+I) = l(x) + θ−Aψ
A
−(x) + θ−Aθ

−
Bε

ABF−−(x)

+ θ−Aθ
−
Bθ

−
Cε

ABCSABC
−−−(x) + θ−Aθ

−
Bθ

−
Cθ

−
Dε

ABCDT−−−−(x).

Then, the supercurrent squared operator can be constructed by firstly taking

OT 2 = LR, (4.81)

and then computing the projection

OT 2 =

∫
d8θOT 2

∣∣∣
θ=θ̄=0

(4.82)

This yields
OT 2 = T++++T−−−−. (4.83)

This novel result indicates, that at least in the conformal case, the supercurrent-squared
operator coincides on-shell to TT̄, indicating that the latter preserves N = (4, 4) SUSY.

60 Construction of TT̄ and TT̄-like Terms for Conformal Theories

5
Construction of TT̄ and TT̄-like Terms for

Non-conformal Theories

5.1 General Approach and Procedure

Many of the same ideas mentioned in Section 4.1 follow through to the proceeding analysis.
However, we will now make note of, and stress, the differences and complications that arise
in the general (non-conformal) case.

The supercurrent multiplets for the non-conformal case are far more complex than the
highly symmetric conformal case. In general, it is unknown whether the TT̄ operator pre-
serves extended supersymmetry. Indeed, even in N = 1 4D, there can be additional terms
in the supercurrrent-squared that are not total derivatives and do not disappear after im-
posing equations of motion, as seen in [16]. Given the relationship between 4D and 2D
theories, it is thus unknown whether 2D extended supersymmetry in theories in general are
preserved by TT̄, though all 2D theories for which the supercurrent has been classified, are.
It may be the case that the supercurrent-squared coincides with TT̄ in general 2D extended
SUSY only after imposing specific restrictions. Additionally, the supercurrent multiplet is
not well-understood in higher extended supersymmetric theories. This makes the study of
supercurrent-squared deformations for such theories, difficult.

In this chapter, we will first study the 2D N = (0, 2) theory, and reproduce the known
result. We will then study the 2D N = (0, 4) theory, and impose sufficient conditions for
the supercurrent-squared operator to be equivalent to TT̄.

61

62 Construction of TT̄ and TT̄-like Terms for Non-conformal Theories

5.2 2D N = (0, 2) Supersymmetry
Recall the supercurrents

(5.1)S++(x, θ
+, θ

+
) = j++(x) + θ+S+++(x)− θ

+
S+++(x)− θ+θ

+
T++++(x)

and

(5.2)T−−−−(x, θ
+, θ

+
) = T−−−−(x) + θ+B+−−−−(x)− θ

+
B+−−−−(x) + θ+θ

+
C++−−−−(x)

discussed for the conformal case of 2D N = (0, 2) supersymmetry. In the non-conformal
case, there are additional complex supercurrents

W−(x, θ
+, θ

+
) = w−(x) + θ+F+−(x) + θ

+
H+−(x) + θ+θ

+
G++−(x),

and
W−(x, θ

+, θ
+
) = w−(x) + θ+H+−(x) + θ

+
F+−(x) + θ+θ

+
G++−(x). (5.3)

Together, these are subject to the constraints [4]

∂−−S++ = D+W− −D+W−, (5.4)

D+T−−−− =
1

2
∂−−W−, (5.5)

D+T−−−− =
1

2
∂−−W−, (5.6)

D+W− = 0, (5.7)

and
D+W− = 0. (5.8)

Solving these equations will yield constraints on the components of the superfields.
The final two constraints imply

H+− = H+− = 0, G++− =
i

2
∂++w−, G++− = − i

2
∂++w−. (5.9)

Then, (5.5) and (5.6) imply that

(5.10)
θ
+
C++−−−− +B+−−−− + (−0.5i)θ

+
θ+∂++

(
B+−−−−

)
+ (−0.5i)θ

+
∂++

(
T−−−−

)
=

1

2
∂−−

(
w− + θ

+
F+− +

i

2
θ+θ

+
∂++w−

)
,

and

(5.11)
θ+C++−−−− +B+−−−− + (−0.5i)θ+θ

+
∂++

(
B+−−−−

)
+ (0.5i)θ+∂++

(
T−−−−

)
=

1

2
∂−−

(
w− + θ+F+− − i

2
θ+θ

+
∂++w−

)

5.2 2D N = (0, 2) Supersymmetry 63

so,

C++−−−− =
1

4
∂−−

(
F+− + F+−

)
, ∂++T−−−− =

i

2
∂−−

(
F+− − F+−

)
(5.12)

B+−−−− =
1

2
∂−−w−, ∂++B+−−−− =

1

2
∂−−∂++w−, (5.13)

Then, (5.4) yields

(5.14)

∂−−

(
j++(x) + θ+S+++(x)− θ

+
S+++(x) + θ+θ

+
T++++(x)

)
= θ

+
G++− + F+− + (−0.5i)θ

+
θ+∂++F+− + (−0.5i)θ

+
∂++

(
w−

)
−

(
θ+G++− − F+− + (0.5i)θ+∂++

(
w−

)
+ (0.5i)θ+θ

+
∂++

(
F+−

))
.

From this, one has

∂−−S+++ = −i∂++w−, ∂−−S+++ = i∂++w−, (5.15)

∂−−j++ = F+− + F̄+−, −∂−−T++++ = ∂++F+− + ∂++F+−. (5.16)

Thus, the final expressions for the supercurrents are

(5.17)S++(x, θ
+, θ

+
) = j++(x) + θ+S+++(x)− θ

+
S+++(x)− θ+θ

+
T++++(x),

(5.18)T−−−−(x, θ
+, θ

+
) = T−−−−(x) +

1

2
θ+∂−−w− − 1

2
θ
+
∂−−w− +

1

4
θ+θ

+
∂2−−j++,

and

W−(x, θ
+, θ

+
) = w−(x) + θ+(

1

2
∂−−j++ + iIm[F+−(x)])−

i

2
θ+θ

+
∂++w−(x). (5.19)

It is known that the supercurrent-squared term is given by [4]

OT 2 = T−−−−S++ −W−W−, (5.20)

and then computing the projection

OT 2 =

∫
dθdθ̄OT 2

∣∣∣
θ=θ̄=0

(5.21)

This yields

(5.22)
OT 2 = −

(
− T++++T−−−− + S+++B+−−−−− + C++−−−−j++

+B+−−−−S+++ + w−G++− +G++−w−− + F+−F+−

)

64 Construction of TT̄ and TT̄-like Terms for Non-conformal Theories

(5.23)
= −

(
− T++++T−−−− + S+++

1

2
∂−−w− +

1

4
(∂2−−j++)j++ +

1

2
(∂−−w−)S+++

+ w−
i

2
∂++w− − i

2
(∂++w−)w−− +

1

4
(∂−−j++)

2 + Im(F+−)
2
)

(5.24)
= −

(
− T++++T−−−− + S+++

1

2
∂−−w− +

1

4
(∂2−−j++)j++ +

1

2
(∂−−w−)S+++

− w−
1

2
∂−−S+++ − 1

2
(∂−−S+++)w−− +

1

4
(∂−−j++)

2 + Im(F+−)
2
)

= −
(
−T++++T−−−−+

1

2
∂−−

(
S+++w−

)
+
1

4
∂−−(j++∂−−j++)+

1

2
∂−−

(
w−S+++

)
+Im(F+−)

2
)

(5.25)
Identifying Im(F+−) = T++−− = Θ,

=⇒ OT 2 = T++++T−−−− −Θ2 + total derivatives. (5.26)

Thus, this supercurrent-squared operator is equivalent to T T̄ up to total derivatives
generated by supersymmetry.

This result matches that obtained in [4], and thus suggests that our software is able to
successfully compute the structure of the supercurrent multiplets, and supercurrent-squared
operator.

5.3 2D N = (0, 4) Supersymmetry 65

5.3 2D N = (0, 4) Supersymmetry
For 2D N = (0, 4) supersymmetry, superspace can be parameterised by four real Grassmann
coordinates, which we will denote θ+ia, i = {1, 2}, a = {1, 2}.

These have associated covariant derivatives

Dia
+ =

∂

∂θ+ia
+
i

2
θ+ia∂++, (5.27)

satisfying

{Dia
+ , D

jb
+} = iεijεab∂++. (5.28)

Recall the general form of the supercurrents for 2D N = (0, 4) theories,

(5.29)S(x, θ+ia) = j(x) + θ+iaψ
ia
+ (x) + θ+iaθ

+i
b F

ab
++(x) + θ+iaθ

+
j
aKij

++(x)

+ θ+a
j θ+iaθ

+i
b S

jb
+++(x) + θ+iaθ

+i
b θ

+a
j θ+jbT++++(x),

and

(5.30)T−−−−(x, θ
+
ia) = T−−−−(x)+θ

+
iaA

ia
+−−−−(x)+θ

+
iaθ

+i
b B

ab
++−−−−(x)+θ

+
iaθ

+
j
aCij

++−−−−(x)

+ θ+a
j θ+iaθ

+i
b G

jb
+++−−−−(x) + θ+iaθ

+i
b θ

+a
j θ+jbH++++−−−−(x).

In the most general case, these currents are subject to

Dia
+T−−−− = Kia

+−−−−, (5.31)

and
∂−−S = L−−. (5.32)

For some arbitary superfields L−− and Kia
+−−−−.

In our study of this theory, we make the ansatz that

Dia
+T−−−− = Kia

+−−−− = ∂−−W ia
− , (5.33)

∂−−S = L−− = εijεabD
ia
+W

jb
−−−, (5.34)

with
W ia

− = Dia
+D

jb
+Wjb−−− − αDjb

+Djb+W ia
−−− = Dia

+D
jb
+Wjb−−−, (5.35)

where α = 0 must be taken in order to be consistent with the algebra of covariant derivatives.
Note that this may not be the most general relationship between W ia

−−− and W ia
− , nor the

most general ansatz.
These two supercurrents have the generic superfield expansions

(5.36)W ia
− (x, θ+ia) = J ia

− (x) + θ+jbM
iajb
+− (x) + θ+jbθ

+j
c N iabc

++−(x) + θ+jbθ
+
k
bP iajk

++−(x)

+ θ+c
j θ+kcθ

+k
b Qiajb

+++−(x) + θ+kcθ
+k
b θ+c

j θ+jbRia
++++−(x),

66 Construction of TT̄ and TT̄-like Terms for Non-conformal Theories

and

(5.37)W ia
−−−(x, θ

+
ia) = wia

−−−(x) + θ+jbX
iajb
+−−−(x) + θ+jbθ

+j
c Y iabc

++−−−(x) + θ+jbθ
+
k
bZiajk

++−−−(x)

+ θ+c
j θ+kcθ

+k
b U iajb

+++−−−(x) + θ+kcθ
+k
b θ+c

j θ+jbV ia
++++−−−(x).

Note that from (5.33), the components of the supercurrents must obey

(5.38)Ai
+−−−−

a(x) = ∂−−J
ia
− (x),

Cij
++−−−−(x) = Bab

++−−−−(x) = 0, (5.39)

∂++T−−−−(x) = − i

2
∂−−M+−ia

ia(x), (5.40)

(5.41)Gai
+++−−−−(x) =

2

9
∂−−

(
P++−j

aij(x)
)
− 2

9
∂−−

(
N++−

i
b
ba(x)

)
,

H++++−−−−(x) =
1

16
∂−−Qia

ia
+++−(x). (5.42)

Additionally, from the algebra (5.28), one must have

D
(i
+(aWj)

− b) = 0, (5.43)
which yields further constraints

M iabj
+− (x) =

1

4
εijεabMkc

kc
+−(x), (5.44)

Qiabj
+++−(x) =

1

4
εijεabQkc

kc
+++−(x), (5.45)

Ria
++++−(x) =

i

36
∂++

(
P++−j

aij(x)
)
− i

36
∂++

(
N++−

i
b
ba(x)

)
, (5.46)

and
∂++

(
J−

ia(x)
)
=

4i

3
P++−j

aij(x) +
4i

3
N++−

i
b
ab(x). (5.47)

Note that these constraints are independent of our choice in how to relate W ia
−−− and W ia

− ,
and are thus in a sense more fundamental.

Then from (5.35), the components of W ia
− and W ia

−−− are related by the equations

J−
ia(x) = −2(Z++−−−j

aji(x) + Y++−−−
i
b
ba(x)) +

i

2
∂++w−−−

ia(x), (5.48)

M+−ia
ia(x) = 2i∂++X+−−−ia

ia(x), (5.49)

N++−
i
b
ba(x) = −9V++++−−−

ia(x) +
3i

2
∂++Y++−−−

i
b
ba(x) +

3

16
∂2++w−−−

ia(x), (5.50)

5.3 2D N = (0, 4) Supersymmetry 67

P++−j
aij(x) = 9V++++−−−

ia(x) +
3i

2
∂++

(
Z++−−−j

aij(x)
)
+

3

16
∂2++w−−−

ia(x), (5.51)

Q+++−ia
ia(x) = 2i∂++U+++−−−ia

ia(x), (5.52)

Ria
++++−(x) =

i

2
∂++V

ia
++++−−−(x)−

1

48
∂2++(Z++−−−j

aij(x)− Y++−−−
i
b
ab(x)). (5.53)

Finally, from the defining relation (5.34), there are the constraints

∂−−j(x) = X+−−−ia
ia(x), (5.54)

∂−−ψ+
ia(x) = −2(Z++−−−j

aji(x) + Y++−−−
i
b
ab(x)) +

i

2
∂++w−−−

ia(x), (5.55)

∂−−F++
ab(x) = ∂−−K++

ij(x) = 0, (5.56)

(5.57)∂−−S+++
ai(x) = 4V++++−−−

ia(x) +
i

3
∂++(Z++−−−j

aji(x)− Y++−−−
i
b
ab(x)),

(5.58)∂−−T++++(x) =
i

8
∂++U+++−−−ia

ai(x).

The relations

Q+++−iabj(x)X+−−−
iajb(x) =

1

4
Q+++−ia

ia(x)X+−−−ia
ia(x) (5.59)

and
M+−iabj(x)U+++−−−

iajb(x) =
1

4
M+−ia

ia(x)U+++−−−ia
ia(x) (5.60)

are useful also.
We can then construct a supercurrent-squared operator with the combination

OT 2 = T−−−−S − εabεijW ia
−Wjb

−−−, (5.61)

and then compute the projection

OT 2 =

∫
dθ4OT 2

∣∣∣
θ=0

. (5.62)

68 Construction of TT̄ and TT̄-like Terms for Non-conformal Theories

This yields

OT 2 = H++++−−−−(x)j(x) + 0.25G+++−−−−ai(x)ψ+
ia(x)− 0.25A+−−−−ia(x)S+++

ai(x)

+ T−−−−(x)T++++(x)−R++++−ia(x)w−−−
ia(x) + 0.25Q+++−iabj(x)X+−−−

iajb(x)

− 1

3
P++−iajk(x)Z++−−−

iajk(x) +
1

3
N++−iabc(x)Y++−−−

iabc(x)

− 0.25M+−iajb(x)U+++−−−
iabj(x)− J−ia(x)V++++−−−

ia(x).

(5.63)

The supercurrents are then constrained to be

(5.64)S(x, θ+ia) = j(x) + θ+iaψ
ia
+ (x) + θ+iaθ

+i
b F

ab
++(x) + θ+iaθ

+
j
aKij

++(x)

+ θ+a
j θ+iaθ

+i
b S

jb
+++(x) + θ+iaθ

+i
b θ

+a
j θ+jbT++++(x),

(5.65)

T−−−−(x, θ
+
ia) = T−−−−(x) + θ+ia

(
∂−−

(
− 2(Z++−−−j

aji(x) + Y++−−−
i
b
ba(x))

+
i

2
∂++w−−−

ia(x)
))

+ θ+a
j θ+iaθ

+i
b ∂−−

(
4V++++−−−

ia(x)

+
i

3
∂++(Z++−−−j

aij(x)− Y++−−−
i
b
ba(x))

)
+

1

16
θ+iaθ

+i
b θ

+a
j θ+jb∂−−Qia

ia
+++−(x),

W ia
− (x, θ+ia) =

(
− 2(Z++−−−j

aji(x) + Y++−−−
i
b
ba(x)) +

i

2
∂++w−−−

ia(x)
)

+
i

2
θia∂++∂−−j(x) + θ+jbθ

+j
c

(
3

2
εba∂−−S+++

ai(x) + i∂++Y++−−−
iabc(x)

+
i

2
εba∂++Z++−−−j

cji(x)− i

2
∂++ε

ba∂++Y++−−−
i
d
dc(x)− 1

4
εba∂2++w−−−

ic(x)

)

+ θ+jbθ
+
k
b

(
− 3

2
εji∂−−S+++

ka(x) +
i

2
εji∂++Y++−−−

k
d
da(x)

+ i∂++Z++−−−
iajk(x)− i

2
∂++ε

ji∂++Z++−−−
k
l
la(x)− 1

4
εji∂2++w−−−

ka(x)

)
+
i

2
θ+ciθ+kcθ

+ka∂++U+++−−−jb
jb(x) + θ+kcθ

+k
b θ+c

j θ+jb
(i
8
∂++∂−−S+++

ai(x)

− 1

24
∂2++(Z++−−−j

aij(x)− Y++−−−
i
b
ab(x))

)
,

(5.66)

and

5.3 2D N = (0, 4) Supersymmetry 69

(5.67)

W ia
−−−(x, θ

+
ia) = wia

−−−(x) + θ+ia∂−−j(x) + θ+jbθ
+j
c Y iabc

++−−−(x) + θ+jbθ
+
k
bZiajk

++−−−(x)

+ θ+c
j θ+kcθ

+k
b U iajb

+++−−−(x) +
1

4
θ+kcθ

+k
b θ+c

j θ+jb
(
∂−−S+++

ai(x)

− i

3
∂++(Z++−−−j

aji(x)− Y++−−−
i
b
ab(x))

)
.

Amongst these terms, we expect U iajb
+++−−−(x) and M+−ia

ia(x) to be related to Θ, and the
supersymmetry current to be related to the difference between Ziajk

++−−−(x) and Y iabc
++−−−(x),

according to our construction.
It should once again be noted that this may not be the most general construction, both

in terms of the initial ansatz, nor in terms of the relation (5.35). Further work must be done
to determine the full set of possible forms that the multiplet can take, and which form is the
most general.

5.3.1 Sufficient Conditions
Note that from the algebra, we must have (5.28). A sufficient condition for this to hold is
when

D
(i
+aWj)

− b = Di
+(aWj

−b) = 0. (5.68)

When this condition is imposed on W ia
− , there are the additional constraints on the

supercurrent components

P++−j
aij(x) = N++−

i
b
ba(x) = ∂++J−

ia(x) = R++++−
ia(x) = G+++−−−−

ia(x) = 0. (5.69)

This then reduces the expression for the supercurrent-squared to

OT 2 = H++++−−−−(x)j(x) + 0.25G+++−−−−ai(x)ψ+
ia(x)− 0.25A+−−−−ia(x)S+++

ai(x)

+ T−−−−(x)T++++(x)−R++++−ia(x)w−−−
ia(x) + 0.25Q+++−iabj(x)X+−−−

iajb(x)

− 1

3
P++−iajk(x)Z++−−−

iajk(x) +
1

3
N++−iabc(x)Y++−−−

iabc(x)

− 0.25M+−iajb(x)U+++−−−
iabj(x)− J−ia(x)V++++−−−

ia(x)

(5.70)

(5.71)
= T−−−−(x)T++++(x)−

1

16
M+−ia

ia(x)U+++−−−ia
ia(x) +

1

4
∂−−(J−ia(x)S+++

ai(x))

+
1

16
∂−−(Qia

ia
+++−(x)j(x)) +

i

12
∂++

(
J−ia(x)(Z++−−−j

aji(x)− Y++−−−
i
b
ab(x))

)
Recalling the conservation equations

(5.72)∂−−T++++(x) =
i

8
∂++U+++−−−ia

ai(x)

70 Construction of TT̄ and TT̄-like Terms for Non-conformal Theories

and

∂++T−−−−(x) = − i

2
∂−−M+−ia

ia(x), (5.73)

suggests the identifications
T++−−(x) ≡

i

2
M+−ia

ia(x) (5.74)

and
T−−++(x) ≡ − i

8
U+++−−−ia

ia(x). (5.75)

Then, the supercurrent-squared term becomes

(5.76)
OT 2 = T−−−−(x)T++++(x)− T++−−(x)T−−++(x) +

1

4
∂−−(J−ia(x)S+++

ai(x))

+
1

16
∂−−(Qia

ia
+++−(x)j(x))+

i

12
∂++

(
J

ia(x)(Z++−−−j
aji(x)−Y++−−−

i
b
ab(x))

)
(5.77)= T−−−−(x)T++++(x)−Θ(x)2 + total derivs.

Thus, under these conditions, the supercurrent-squared term for N = (0, 4) supersym-
metry reduces to the TT̄ term up to a total derivative.

The supercurrents also reduce to

(5.78)S(x, θ+ia) = j(x) + θ+iaψ
ia
+ (x) + θ+iaθ

+i
b F

ab
++(x) + θ+iaθ

+
j
aKij

++(x)

+ θ+a
j θ+iaθ

+i
b S

jb
+++(x) + θ+iaθ

+i
b θ

+a
j θ+jbT++++(x),

(5.79)
T−−−−(x, θ

+
ia) = T−−−−(x) + θ+ia

(
∂−−

(
− 2(Z++−−−j

aji(x) + Y++−−−
i
b
ba(x))

+
i

2
∂++w−−−

ia(x)
))

+
1

16
θ+iaθ

+i
b θ

+a
j θ+jb∂−−Qia

ia
+++−(x),

(5.80)
W ia

− (x, θ+ia) =
(
− 2(Z++−−−j

aji(x) + Y++−−−
i
b
ba(x)) +

i

2
∂++w−−−

ia(x)
)

+
i

2
θia∂++∂−−j(x) +

i

2
θ+ciθ+kcθ

+ka∂++U+++−−−jb
jb(x),

and

(5.81)
W ia

−−−(x, θ
+
ia) = wia

−−−(x) + θ+ia∂−−j(x) + θ+jbθ
+j
c Y iabc

++−−−(x)

+ θ+jbθ
+
k
bZiajk

++−−−(x) + θ+c
j θ+kcθ

+k
b U iajb

+++−−−(x)

− i

12
θ+kcθ

+k
b θ+c

j θ+jb∂++(Z++−−−j
aji(x)− Y++−−−

i
b
ab(x)).

To summarise, under these very strict conditions, the supercurrent-squared term reduces
to the TT̄ operator. However, it may be that these conditions are too strong, and thus
unphysical. Further analysis should be performed to see if this formulation is physically
meaningful, or whether a more general result holds.

6
Conclusion

The TT̄ deformation presents a powerful tool to study the UV behaviour of 2D QFTs. Given
that QFTs are notoriously difficult to solve, and that most of our knowledge is confined to
low energy approximations, the remarkability of the TT̄ operator to make high-energy pre-
dictions for our 2D theories cannot be overstated. A full classification of the supersymmetric
analogue to TT̄, the supercurrent-squared operator, will allow for a better understanding of
the high-energy behaviour of 2D supersymmetric QFTs possessing extended supersymmetry,
and whether or not the flow generated by TT̄ preserves supersymmetry.

In this thesis, we focused on extending the classification of supercurrent-squared defor-
mations to 2D N = (0, 4) and N = (4, 4) supersymmetry. These theories have important
roles in the understanding of N = 4 strings and little string theories [26], and N = (0, 4)
theories are relevant to heterotic theories on Calabi-Yau manifolds. It would be interesting
to investigate whether supersymmetric TT̄ plays a role in improving the understanding of
these models with extended supersymmetry, which still remains mysterious. It is well known
that little string theory and linear dilaton backgrounds have shown to arise in the analysis
of single trace TTbar deformations [27], though many technicalities are still unknown. Fur-
ther work extending this thesis would help push the boundary of our understanding of these
string models and models of quantum gravity.

Furthermore, a better understanding of extended SUSY TT̄ in general could give an
answer on whether in higher dimensions these deformations only apply to effective field
theories, or to all theories. With extended supersymmetry, TTbar-like operators should lie
within short multiplets. This would allow them to be free of short-distance divergencies
and be quantum mechanically well-defined. Understanding this property is key to studying
deformations in d > 2. It would be very interesting to understand whether maximally
supersymmetric theories (e.g., 4D N = 4, and 3D N = 6, 8 gauge theories) possess quantum
mechanically well-defined, though irrelevant, deformations. By dimensional grounds, we
know that such deformations would be part of short multiplets and then enjoy enhanced

71

72 Conclusion

quantum behaviours.
In this thesis, we have demonstrated sufficient conditions that under which the supercurrent-

squared operator in the 2D N = (0, 4) takes the same form as the TT̄ operator. Immediate
further works should firstly explore whether these sufficient conditions are necessary condi-
tions for the supercurrent to obey, and whether or not the resulting supercurrent multiplet
is physical. If they are not, the reduction from the supercurrent-squared operator to the TT̄
operator should be studied under more general conditions.

Additionally, we have examined 4D N = 2 supersymmetry in the conformal setting. This
is an important step towards understanding the 2D N = (4, 4) theory. By extending the
analysis of 4D N = 2 supersymmetry to the non-conformal case, in a method analogous to
the 2D N = (0, 4) case presented in this thesis, the result can be dimensionally reduced to
study the 2D N = (4, 4) theory. This is perhaps the easiest way to study the 2D N = (4, 4)
theory, as the supercurrent multiplets of this theory are poorly understood in the general
case.

Additionally, as part of this thesis, we have created a new piece of software that is able to
perform algebraic manipulations of tensors. Particularly, it is able to handle graded objects
in a consistent manner, while being fast, and easy to use for those without a programming
background. Such a piece of software is useful for a far broader set of applications than solely
the study of supersymmetry. Future works extending this thesis could aim to incorporate
additional useful functions into the software, making it even more powerful as a tool to tackle
difficult algebra.

A
Notation and Convention

A.1 2D Notation and Conventions

A.1.1 Lightcone Conventions
We define the lightcone coordinates

x±± =
1√
2

(
x0 ± x1

)
, (A.1)

with associated derivatives
∂±± =

1√
2
(∂0 ± ∂1) (A.2)

obeying
∂±±x

±± = 1 and ∂±±x
∓∓ = 0. (A.3)

Spinors carry a single lightcone index, which is raised and lowered by

ψ+ = −ψ−, ψ− = ψ+. (A.4)

The two-dimensional metric is ηab = diag(−1,+1). The Levi-Civita tensor satisfies ε01 =
1.

A.1.2 N = (0, 2) Conventions
In flat 2D N = (0, 2), we parametrise superspace by

xM = (x±±, θ+, θ
+
), (A.5)

73

74 Notation and Convention

where θ+ is a complex Grassmann coordinate and θ̄+ is its complex conjugate. The spinor
covariant derivatives and supercharges are given by

D+ =
∂

∂θ+
− i

2
θ̄+∂++, D+ = − ∂

∂θ̄+
+

i

2
θ+∂++, (A.6)

Q+ =
∂

∂θ+
+

i

2
θ̄+∂++, Q+ = − ∂

∂θ̄+
− i

2
θ+∂++, (A.7)

and obey the anti-commutation relations{
D+,D+

}
= i∂++,

{
Q+,Q+

}
= −i∂++. (A.8)

with all the other (anti-)commutators between the Ds, Qs, and ∂±± being identically zero.
Given an N = (0, 2) superfield 3F(ζ) = F(σ, θ) its supersymmetry transformations are given
by

δQF := iε+Q+F(σ, θ)− iε+Q+F(σ, θ). (A.9)

A.1.3 N = (2, 2) Conventions
In flat 2D N = (0, 2), we parametrise superspace by

xM = (x±±, θ±, θ
±
), (A.10)

where θ± is a complex Grassmann coordinate and θ̄± is its complex conjugate. The spinor
covariant derivatives are given by DA =

(
∂a, D±, D̄±

)
, are defined by

D± =
∂

∂θ±
− i

2
θ̄±∂±±, D̄± = − ∂

∂θ̄±
+
i

2
θ±∂±±, (A.11)

and satisfy {
D±, D̄±

}
= i∂±±, (A.12)

with all other (anti-)commutators vanishing. We define for convenience

∂± ≡ ∂

∂θ±
, ∂± ≡ ∂

∂θ̄±
. (A.13)

Additionally, the supercharges are given by

Q± =
∂

∂θ±
+
i

2
θ̄±∂±±, Q± = − ∂

∂θ̄±
− i

2
θ±∂±±, (A.14)

satisfying {
Q±,Q±

}
= −i∂±±, (A.15)

and commuting with the covariant derivatives DA. These generate supersymmetry transfor-
mations for an N = (2, 2) superfield F(ζ) = F

(
x±±, θ±, θ̄±

)
given by

δQF := iε+Q+F + iε−Q−F − iε̄+Q+F − iε̄−Q−F . (A.16)

A.2 4D Notation and Conventions 75

A.1.4 N = (0, 4) Conventions
In flat 2D N = (0, 4) supersymmetry, superspace can be parametrised by 4 real Grassmann
coordinates,

xM = (x±±, θ+ia), (A.17)

where i = {1, 2}, a = {1, 2} are SU(2) indices.
These have associated covariant derivatives

Dia
+ =

∂

∂θ+ia
+
i

2
θ+ia∂++, (A.18)

satisfying

{Dia
+ , D

jb
+} = iεijεab∂++ , [∂±±, D

ia
+] = 0. (A.19)

A.1.5 N = (4, 4) Conventions
In flat 2D N = (4, 4), we parameterise superspace by 8 Grassmann coordinates

xM = (x±±, θ+I , θ
−
A), (A.20)

where θ+I and θ−A are real Grassmann coordinates and I = {1, 2, 3, 4}, A = {1, 2, 3, 4} are
SO(4) indices.

These have associated covariant derivatives

DI
+ =

∂

∂θ+I
+
i

2
θ+I∂++, (A.21)

and
DA

− =
∂

∂θ−A
+
i

2
θ−A∂−−. (A.22)

One can see that these obey

{DI
+, D

J
+} = iδIJ∂++, (A.23)

and
{DA

−, D
B
−} = iδAB∂−−, (A.24)

while they commute with ∂±±.

A.2 4D Notation and Conventions
4D N = 2 Minkowski superspace is defined in terms of the superspace coordinates

zM =
(
xa, θαi , θ̄

i
α̇

)
, a = 0, 1, 2, 3, α = +,−, α̇ = +̇,−, i = 1, 2, (A.25)

with Minkowski metric
ηab = diag[−1, 1, 1, 1]. (A.26)

76 Notation and Convention

We denote spacetime indices with Latin letters a, ..., h, and SU(2) indices with Latin let-
ters i, ... onwards, including uppercase. We denote spinor indices with Greek letters, with
dotted indices for the anti-fundamental representation, and undotted for the fundamental
representation.

These satisfy the following reality conditions

(xm)∗ = xm, (θαi)
∗ = θ̄α̇i,

(
θ̄iα̇
)∗

= θαi,
(
θαi
)∗

= −θ̄α̇i ,
(
θ̄α̇i
)∗

= −θiα (A.27)

and

(εαβ)
∗ = εα̇β̇,

(
εαβ
)∗

= εα̇β̇,
(
εα̇β̇
)∗

= εαβ,
(
εα̇β̇
)∗

= εαβ,
(
δβα
)∗

= δβ̇α̇,
(
δβ̇α̇

)∗
= δβα(

εij
)∗

= −εij, (εij)
∗ = −εij,

(
δji
)∗

= δij,
(A.28)

where
ε12 = ε21 = 1. (A.29)

Spinor and SU(2) indices are raised and lowered with

ψα = εαβψβ, ψα = εαβψ
β, ψα̇ = εα̇β̇ψβ̇, ψα̇ = εα̇β̇ψ

β̇, ψi = εijψj, ψi = εijψ
j

(A.30)
where it holds that

εαγεγβ = δαβ , εα̇γ̇εγ̇β̇ = δα̇
β̇
, εikεkj = δij

εαγε
γβ = δβα, εα̇γ̇ε

γ̇β̇ = δβ̇α̇, εikε
kj = δji .

(A.31)

The superspace covariant derivatives are given by

DM =
(
∂m, D

i
α, D̄

α̇
i

)
(A.32)

where

∂m =
∂

∂xm
, Di

α =
∂

∂θαi
− i
(
σb
)β̇
α
θ̄i
β̇
∂b, D̄α̇

i =
∂

∂θ̄iα̇
− i
(
σb
)
β
α̇θβi ∂b (A.33)

that satisfy the algebra[
∂a, D

i
α

]
=
[
∂a, D̄

α̇
i

]
= 0,

{
Di

α, D
j
β

}
=
{
D̄α̇

i , D̄
β̇
j

}
= 0{

Di
α, D̄

β̇
j

}
= −2iδij (σ

c)β̇α ∂c = −2iδij∂
β̇
α,{

Di
α, D̄

j

β̇

}
= 2iεij (σc)αβ̇ ∂c = 2iεij∂αβ̇,

{
Dαi, D̄β̇j

}
= −2iεij (σ

c)αβ̇ ∂c = −2iεij∂αβ̇.

(A.34)
These also commute with the supercharges that, on a superfields U(z) = U(x, θ, θ̄), act as a
differential operator

Qi
α = i

∂

∂θαi
−
(
σb
)β̇
α
θ̄i
β̇
∂b, Q̄α̇

i = i
∂

∂θ̄iα̇
−
(
σb
)
β
α̇θβi ∂b

[DA, QB] = 0, δU := U ′(z)− U(z) = i
(
εαi Q

i
α + ε̄iα̇Q̄

α̇
i

)
U.

(A.35)

A.2 4D Notation and Conventions 77

Note that
D̄α̇

i D̄
β̇
j =

1

2

[
D̄α̇

i , D̄
β̇
j

]
+

1

2

{
D̄α̇

i , D̄
β̇
j

}
=⇒ D̄α̇

i D̄
β̇
j =

1

2
εα̇β̇D̄ij −

1

2
εijD̄

α̇β̇
(A.36)

where we have made the definitions

D̄α̇β̇ := D̄
(α̇
k D̄

β̇)k, D̄ij := D̄γ̇(iD̄
γ̇
j). (A.37)

Analogously,
θ̄α̇i θ̄

β̇
j =

1

2
εα̇β̇ θ̄ij −

1

2
εij θ̄

α̇β̇ (A.38)

where we have defined
θ̄α̇β̇ := θ̄

(α̇
k θ̄

β̇)k, θ̄ij := θ̄γ̇(iθ̄
γ̇
j). (A.39)

Thus there are two independent θ2 structures. Importantly,

D̄α̇
i D̄jk =

2

3
εi(jD̄

α̇qD̄k)q, D̄α̇
i D̄

β̇γ̇ =
2

3
εα̇(β̇D̄γ̇)kD̄ik, (A.40)

and analogously,
θ̄α̇i θ̄jk =

2

3
εi(j θ̄

α̇qθ̄k)q θ̄α̇i θ̄
β̇γ̇ =

2

3
εα̇(β̇ θ̄γ̄)kθ̄ik. (A.41)

Note however, that due to the anticommuting nature of the Grassmann variables, these
products both reduce to the single θ3 independent structure

θ̄iα̇θ̄ij = θ̄α̇ = θ̄jβ̇ θ̄
α̇β̇. (A.42)

Also,
D̄4 := D̄ijD̄ij, D̄α̇β̇D̄α̇β̇ = −D̄4, (A.43)

are the 4-derivative structures and analogously,

θ̄4 := θ̄ij θ̄ij

θ̄α̇β̇ θ̄α̇β̇ = −θ̄4.
(A.44)

Analogous equations hold for the complex conjugates, with the definitions

θαβ := θ(αkθ
β)
k , θij := θγ(iθγj). (A.45)

Given Va and Fab = −Fba we use the bispinor convention, given by

Vαβ̇ = (σa)αβ̇ Va, Va = −1

2
(σ̃a)

β̇α Vαβ̇

Fαβ =
1

2

(
σab
)
αβ
Fab, Fα̇β̇ = −1

2

(
σ̃ab
)
α̇β̇
Fab

Fab = (σab)
αβ Fαβ − (σ̃ab)

β̇β̇ Fα̇β̇,

(A.46)

where
(σab)

β
α = −1

4

(
(σa)αβ̇ (σ̃b)

β̇β − (σb)αβ̇ (σ̃a)
β̇β
)

(σ̃ab)
α̇
β̇ = −1

4

(
(σ̃a)

α̇β (σb)ββ̇ − (σ̃b)
α̇β (σa)ββ̇

)
.

(A.47)

78 Notation and Convention

B
Example Code Usage

B.1 4D N = 2 Supercurrent Code

1 include("alakazam.jl")

2 include("superspace.jl")

3

4 ######################################

5 ######################################

6 ## setup and definitions

7 ######################################

8

9 #define index sets

10 flavour_indices = IndexSet("flavour", 2,lower)

11 spinor_indices = IndexSet("spinor", 2)

12 spacetime_indices = IndexSet("spacetime", 4,lower)

13 spinor_conj_indices = IndexSet("spinor_conj", 2,lower)

14

15 #define indices

16 i = Index("i", flavour_indices, 0)

17 j = Index("j", flavour_indices)

18 k = Index("k", flavour_indices, 0)

19 l = Index("l", flavour_indices)

20 m = Index("m", flavour_indices)

21 n = Index("n", flavour_indices)

22 p = Index("p", flavour_indices)

23 q = Index("q", flavour_indices)

79

80 Example Code Usage

24 r = Index("r", flavour_indices)

25 s = Index("s", flavour_indices)

26 t = Index("t", flavour_indices)

27 u = Index("u", flavour_indices)

28 v = Index("v", flavour_indices)

29 y = Index("y", flavour_indices)

30 z = Index("z", flavour_indices)

31 A = Index("A", flavour_indices)

32 B = Index("B", flavour_indices)

33 C = Index("C", flavour_indices)

34 D = Index("D", flavour_indices)

35 E = Index("E", flavour_indices)

36 F = Index("F", flavour_indices)

37

38 α = Index("α", spinor_indices, 1)

39 β = Index("β", spinor_indices, 1)

40 γ = Index("γ", spinor_indices, 1)

41 μ = Index("μ", spinor_indices, 1)

42 ν = Index("ν", spinor_indices, 1)

43 ρ = Index("ρ", spinor_indices, 1)

44 τ = Index("τ", spinor_indices, 1)

45 σ = Index("σ", spinor_indices, 1)

46 ω = Index("ω", spinor_indices, 1)

47 χ = Index("χ", spinor_indices, 1)

48 π = Index("π", spinor_indices, 1)

49 η = Index("η", spinor_indices, 1)

50

51 αdot = Index("̇α", spinor_conj_indices, 1)

52 βdot = Index("̇β", spinor_conj_indices, 1)

53 γdot = Index("̇γ", spinor_conj_indices, 1)

54 ρdot = Index("̇ρ", spinor_conj_indices, 1)

55 μdot = Index("̇μ", spinor_conj_indices, 1)

56 νdot = Index("̇ν", spinor_conj_indices, 1)

57 τdot = Index("̇τ", spinor_conj_indices, 1)

58 σdot = Index("̇σ", spinor_conj_indices, 1)

59 ωdot = Index("̇ω", spinor_conj_indices, 1)

60 πdot = Index("̇π", spinor_conj_indices, 1)

61 ηdot = Index("̇η", spinor_conj_indices, 1)

62

63 a = Index("a", spacetime_indices, 0)

64 b = Index("b", spacetime_indices)

65 c = Index("c", spacetime_indices)

66 d = Index("d", spacetime_indices)

67 e = Index("e", spacetime_indices)

B.1 4D N = 2 Supercurrent Code 81

68 f = Index("f", spacetime_indices)

69 g = Index("g", spacetime_indices)

70

71 #define coordinates, tensors will be functions of these

72 #coordinates (for use in derivatives)

73 x = Coordinate("x", spacetime_indices)

74 θ = Coordinate("θ", [flavour_indices, spinor_indices])

75 θbar = Coordinate("Θ", [flavour_indices, spinor_conj_indices])

76

77 # define our grassman basis ̄θ

78 θiα=Tensor("θ",[i=>lower, α=>upper],θ)

79 barθαi=Tensor("Θ",[i=>upper,αdot=>lower],θbar)

80 barθij=Tensor("Θ",[i=>lower, νdot=>upper],θbar)*Tensor("Θ",[j=>lower,

81 νdot=>lower],θbar)

82 barθupij=Tensor("Θ",[i=>upper, μdot=>upper],θbar)*Tensor("Θ",

83 [j=>upper, μdot=>lower],θbar)

84 θij=Tensor("θ",[i=>lower, ν=>upper],θ)*Tensor("θ",[j=>lower,

85 ν=>lower],θ)

86 θupij=Tensor("θ",[i=>upper, μ=>upper],θ)*Tensor("θ",[j=>upper,

87 μ=>lower],θ)

88 θjα=Tensor("θ",[j=>lower, α=>upper],θ)

89 θ4=Tensor("θ",[m=>lower, ν=>upper],θ)*Tensor("θ",[n=>lower,

90 ν=>lower],θ)*Tensor("θ",[m=>upper, μ=>upper],θ)*Tensor("θ",[n=>upper,

91 μ=>lower],θ)

92 θbar4=Tensor("Θ",[p=>lower, νdot=>upper],θbar)*Tensor("Θ",[q=>lower,

93 νdot=>lower],θbar)*Tensor("Θ",[p=>upper, μdot=>upper],θbar)*Tensor("Θ",

94 [q=>upper, μdot=>lower],θbar)

95 θᵅᵝ=Tensor("θ",[y=>upper, α=>upper],θ)*Tensor("θ",[y=>lower,

96 β=>upper],θ)

97 θᵦᵧ =Tensor("θ",[y=>upper, β=>lower],θ)*Tensor("θ",[y=>lower,

98 γ=>lower],θ)

99 barθᵅᵝ=Tensor("Θ",[z=>upper, αdot=>upper],θbar)*Tensor("Θ",

100 [z=>lower, βdot=>upper],θbar)

101 barθᵦᵧ =Tensor("Θ",[z=>upper, βdot=>lower],θbar)*Tensor("Θ",

102 [z=>lower, γdot=>lower],θbar)

103 θiβ=Tensor("θ",[i=>lower, β=>upper],θ)

104 barθjα=Tensor("Θ",[j=>upper,αdot=>lower],θbar)

105 barθjk=Tensor("Θ",[j=>lower, νdot=>upper],θbar)*Tensor("Θ",[k=>lower,

106 νdot=>lower],θbar)

107 θjk=Tensor("θ",[j=>lower, ν=>upper],θ)*Tensor("θ",[k=>lower, ν=>lower],θ)

108 θʲᵏ=Tensor("θ",[j=>upper, ν=>upper],θ)*Tensor("θ",[k=>upper, ν=>lower],θ)

109

110

111

82 Example Code Usage

112 # defining action of the derivatives on grassmann variables

113 grassman_deriv_normalrep=Derivative("∂",zero, [θ],

114 [j => upper, β => lower])

115 grassman_deriv_conjrep=Derivative("��",zero, [θbar],

116 [j => lower, βdot => upper])

117 spatial_deriv=Derivative("∇",zero, [x], [b => lower])

118 #note that the derivative isn't defined on literally "θiα", but on tensors

119 #with the same index patterns

120 add_derivative_action(grassman_deriv_normalrep,θiα,KroneckerDelta([i=>lower,

121 j=>upper])*KroneckerDelta([β=>lower,α=>upper]))

122 add_derivative_action(grassman_deriv_normalrep,Tensor("θ",[i=>lower, α=>lower],θ),

123 KroneckerDelta([i=>lower,j=>upper])*EpsilonTensor([α=>lower,β=>lower]))

124 add_derivative_action(grassman_deriv_normalrep,Tensor("θ",[i=>upper, α=>upper],θ),

125 EpsilonTensor([i=>upper,j=>upper])*KroneckerDelta([β=>lower,α=>upper]))

126 add_derivative_action(grassman_deriv_normalrep,Tensor("θ",[i=>upper, α=>lower],θ),

127 EpsilonTensor([i=>upper,j=>upper])*EpsilonTensor([α=>lower,β=>lower]))

128

129 add_derivative_action(grassman_deriv_conjrep,barθαi,KroneckerDelta([i=>upper,

130 j=>lower])*KroneckerDelta([βdot=>upper,αdot=>lower]))

131 add_derivative_action(grassman_deriv_conjrep,Tensor("Θ",[i=>lower,

132 αdot=>lower],θbar),EpsilonTensor([i=>lower,j=>lower])*KroneckerDelta([βdot=>upper,

133 αdot=>lower]))

134 add_derivative_action(grassman_deriv_conjrep,Tensor("Θ",[i=>upper,

135 αdot=>upper],θbar),KroneckerDelta([i=>upper,j=>lower])*EpsilonTensor([αdot=>upper,

136 βdot=>upper]))

137 add_derivative_action(grassman_deriv_conjrep,Tensor("Θ",[i=>lower,

138 αdot=>upper],θbar),EpsilonTensor([i=>lower,j=>lower])*EpsilonTensor([αdot=>upper,

139 βdot=>upper]))

140

141

142 #create our superfield expansion

143

144 SUPERFIELD=(Tensor("j", x)

145 +θiα*Tensor("ψ",[i=>upper, α=>lower],x)

146 +θij*SymmetricTensor("F",[i=>upper, j=>upper],x)

147 +(θjα*θupij)*Tensor("G",[i=>lower, α=>lower],x)

148 +θij*θupij*Tensor("H",x)

149 +θjα*barθαi*Tensor("K",[j=>upper, α=>lower,i => lower, αdot =>upper],x)

150 +Tensor("θ",[k=>lower, α=>upper],θ)*barθupij*Tensor("L",

151 [k=>upper, α =>lower, i=>lower,j => lower],x)

152 +Tensor("θ",[k=>lower, α=>upper],θ)*barθαi*barθij*Tensor("M",

153 [k=>upper, j=>upper, α =>lower, αdot=> upper],x)

154 +θiα*θbar4*Tensor("N",[i=>upper, α=>lower],x)

155 +θij*Tensor("Θ",[m=>upper, νdot=>upper],θbar)*Tensor("Θ",

B.1 4D N = 2 Supercurrent Code 83

156 [n=>upper, νdot=>lower],θbar)*Tensor("P",[i=>upper,j=>upper,m=>lower,

157 n=>lower],x)

158 +θij*Tensor("Θ",[k=>upper, αdot=>lower],θbar)*Tensor("Θ",

159 [k=>lower, νdot=>upper],θbar)*Tensor("Θ",[l=>lower, νdot=>lower],

160 θbar)*Tensor("Q",[i=>upper,j=>upper,l=>upper,αdot=>upper],x)

161 +θij*θbar4*SymmetricTensor("R",[i=>upper, j=>upper],x)

162 +θupij*Tensor("θ",[j=>lower, α=>upper],θ)*Tensor("Θ",[k=>upper,

163 αdot=>lower],θbar)*Tensor("Θ",[k=>lower, νdot=>upper],θbar)*Tensor("Θ",

164 [l=>lower, νdot=>lower],θbar)*Tensor("S",[i=>lower,α=>lower,l=>upper,

165 αdot=>upper],x)

166 +Tensor("θ",[j=>lower, α=>upper],θ)*θupij*θbar4*Tensor("E",[i=>lower,

167 α=>lower],x)

168 +θ4*θbar4*Tensor("V",x)

169 +barθαi*Tensor("̄ψ",[i=>lower, αdot=>upper],x)

170 +barθupij*Tensor("̄F",[i=>lower, j=>lower],x)

171 +barθαi*barθij*Tensor("̄G",[j=>upper, αdot=>upper],x)

172 +θbar4*Tensor("̄H",x)

173 +barθαi*Tensor("θ",[j=>lower, ν=>upper],θ)*Tensor("θ",[k=>lower,

174 ν=>lower],θ)*Tensor("̄L",[j=>upper,k=>upper, i=>lower, αdot=>upper],x)

175 +barθαi*Tensor("θ",[k=>lower, β=>upper],θ)*Tensor("θ",[j=>upper,

176 ν=>upper],θ)*Tensor("θ",[k=>upper, ν=>lower],θ)*Tensor("̄M",[j=>lower,

177 i=>lower,β=>lower, αdot=>upper],x)

178 +barθαi*θ4*Tensor("̄N",[i=>lower, αdot=>upper],x)

179 +barθupij*Tensor("θ",[k=>upper, μ=>upper],θ)*Tensor("θ",[l=>upper,

180 μ=>lower],θ)*Tensor("θ",[l=>lower, α=>upper],θ)*Tensor("̄Q",[i=>lower,

181 j=>lower,α =>lower, k=>lower],x)

182 +barθupij*θ4*SymmetricTensor("̄R",[i=>lower, j=>lower],x)

183 +Tensor("Θ",[j=>upper, αdot=>lower],θbar)*barθij*θ4*Tensor("̄E",[i=>upper,

184 αdot=>upper],x)

185 +θᵅᵝ*SymmetricTensor("Ω",[α=>lower,β=>lower],x)

186 +barθᵦᵧ*SymmetricTensor("̄Ω",[βdot=>upper,γdot=>upper],x)

187 +θᵅᵝ*barθαi*Tensor("A",[α=>lower, β=>lower,i=>lower,αdot=>upper],x)

188 +θᵅᵝ*barθupij*Tensor("B",[α=>lower, β=>lower,i=>lower,j=>lower],x)

189 +θᵅᵝ*barθαi*barθij*Tensor("U",[α=>lower, β=>lower,j=>upper,αdot=>upper],x)

190 +θᵅᵝ*θbar4*SymmetricTensor("C",[α=>lower, β=>lower],x)

191 +θᵅᵝ*barθᵦᵧ*SymmetricTensor("T",[α=>lower, β=>lower,βdot=>upper, γdot=>upper],x)

192 +barθᵦᵧ*θiα*Tensor("̄A",[i=>upper, α =>lower,βdot=>upper,γdot=>upper],x)

193 +barθᵦᵧ*θij*Tensor("̄B",[i=>upper, j =>upper,βdot=>upper,γdot=>upper],x)

194 +barθᵦᵧ*θjα*θupij*Tensor("̄U",[i=>lower, α =>lower,βdot=>upper,γdot=>upper],x)

195 +barθᵦᵧ*θ4*SymmetricTensor("̄C",[βdot=>upper,γdot=>upper],x)

196)

197

198 custom_sort_order(["θ","Θ","ϵ"])

199

84 Example Code Usage

200

201

202

203 ######################################

204 ######################################

205 ## computing the constraint equations

206 ######################################

207

208 covar_expansion=grassman_deriv_normalrep-im*Tensor("σ",

209 [b =>upper, γdot=>upper, β =>lower])*Tensor("Θ",[j=>upper,

210 γdot=>lower],θbar)*spatial_deriv

211 covar=Derivative("D",zero, [x,θ], [j => upper, β => lower])

212 covar_expansion_bar=grassman_deriv_conjrep-im*Tensor("σ",[b =>upper,

213 βdot=>upper, β =>lower])*Tensor("θ",[j=>lower,β=>upper],θ)*spatial_deriv

214 covar_bar=Derivative("̄D",zero, [x,θbar], [j => lower, βdot => upper])

215 println("our superfield expansions is: ", SUPERFIELD)

216

217 #apply our derivative

218 println("Computing Symmetrised deriv: ")

219

220 D_SUPERFIELD=Derivative("D",SUPERFIELD, [x,θbar], [s => upper, τ => lower])

221 out=expand_derivative(D_SUPERFIELD,covar,covar_expansion)

222 out=apply_derivative(out)

223 out=simplify(out)

224 DD_SUPERFIELD=Derivative("D",out,[x,θbar], [r => upper, ρ => lower])

225 out=expand_derivative(DD_SUPERFIELD,covar,covar_expansion)

226 out=apply_derivative(out)

227 out=EpsilonTensor([τ=>upper,ρ=>upper])*out

228 out=eliminate_epsilon(out)

229

230

231 D_SUPERFIELD2=Derivative("D",SUPERFIELD, [x,θbar], [r => upper, τ => lower])

232 out2=expand_derivative(D_SUPERFIELD2,covar,covar_expansion)

233 out2=apply_derivative(out2)

234 out2=simplify(out2)

235 DD_SUPERFIELD2=Derivative("D",out2,[x,θbar], [s => upper, ρ => lower])

236 out2=expand_derivative(DD_SUPERFIELD2,covar,covar_expansion)

237 out2=apply_derivative(out2)

238 out2=EpsilonTensor([τ=>upper,ρ=>upper])*out2

239 out2=eliminate_epsilon(out2)

240

241

242 println("Result:")

243 res2=simplify(out+out2)/2

B.1 4D N = 2 Supercurrent Code 85

244 println(res2)

245

246

247 #example extraction of a constraint

248

249 #theta=2, thetabar=0 term in expansion:

250 tt=2

251 tb=0

252 constraint=rename_dummies(get_weighted_terms(get_weighted_terms(res2,

253 "θ",tt),"Θ",tb))

254 #get the constraint on the 2nd independant structure associated with θ^2

255 constraint=project_component(constraint,θ,[i=>upper, α=>lower],tt,tb,θbar,

256 [i=>lower, αdot=>upper],2,1)

257 constraint=rename_dummies(contract_metrics(simplify(

258 eliminate_epsilon(eliminate_kronecker(constraint)))))

259

260

261 ######################################

262 ######################################

263 ## compute the supercurrent squared

264 ######################################

265

266

267 SC²=SUPERFIELD × SUPERFIELD

268 out=get_weighted_terms(get_weighted_terms(SC²,"θ",4),"Θ",4)

269 #integrate over superspace to obtain the supercurrent-squared term

270 ttb=project_component(out,θ,[i=>upper, α=>lower],4,4,θbar,[i=>lower,

271 αdot=>upper],1,1)

272 println(ttb)

273

86 Example Code Usage

References

[1] F. A. Smirnov and A. B. Zamolodchikov. On the space of integrable quantum field
theories. arXiv preprint arXiv:1608.05499v1 (2016).

[2] T. T. Dumitrescu and N. Seiberg. Supercurrents and brane currents in diverse dimen-
sions. Journal of High Energy Physics 2011(7) (2011). URL

[3] M. Baggio, A. Sfondrini, G. Tartaglino-Mazzucchelli, and H. Walsh. On ttbar deforma-
tions and supersymmetry. Journal of High Energy Physics 2019(6) (2019). URL

[4] H. Jiang, A. Sfondrini, and G. Tartaglino-Mazzucchelli. Ttbar deformations with
n=(0,2) supersymmetry. Physical Review D 100(4) (2019). URL

[5] C.-K. Chang, C. Ferko, S. Sethi, A. Sfondrini, and G. Tartaglino-Mazzucchelli. Ttbar
flows and (2, 2) supersymmetry. Physical Review D 101(2) (2020). URL

[6] C. Ferko. Supersymmetry and irrelevant deformations. arXiv preprint
arXiv:2112.14647v2 (2021).

[7] C. Ferko, L. Smith, and G. Tartaglino-Mazzucchelli. Stress Tensor Flows, Birefringence
in Non-Linear Electrodynamics, and Supersymmetry (2023). 2301.10411.

[8] Lightcone in 2d minkowski spacetime. https://i.pinimg.com/originals/03/3c/19/033c

19f3c7e7d95430b54b8b86e3d139.png (2023). Accessed: February 17, 2023.

[9] Einstein. https://filebox.ece.vt.edu/ jbhuang/teaching/ ece5554-

4554/fa16/images/hybrid_image.jpg (2016). Accessed: February 17, 2023.

[10] T. Lancaster and S. Blundell. Quantum Field Theory for the Gifted Amateur (Oxford
University Press, 2014).

[11] A. Shomer. A pedagogical explanation for the non-renormalizability of gravity. arXiv
preprint arXiv:0709.3555 (2008).

[12] M. E. Peskin and D. V. Schroeder. An Introduction to Quantum Field Theory (CRC
Press, 2019).

[13] A. Schellekens. Introduction to Conformal Field Theory (1995).

[14] A. B. Zamolodchikov. Expectation value of composite field ttbar in two-dimensional
quantum field theory. arXiv preprint hep-th/0401146 (2004).

87

88 References

[15] Y. Jiang. A pedagogical review on solvable irrelevant deformations of 2d quantum field
theory. arXiv preprint arXiv:1904.13376 (2021).

[16] C. Ferko, H. Jiang, S. Sethi, and G. Tartaglino-Mazzucchelli. Non-linear supersymmetry
and ttbar-like flows (2019). 1910.01599.

[17] G. Bonelli, N. Doroud, and M. Zhu. TTbar-deformations in closed form (2018).
1804.10967.

[18] S. Coleman and J. Mandula. All possible symmetries of the s matrix. Phys. Rev. 159,
1251 (1967). https://doi.org/10.1103/PhysRev.159.1251.

[19] R. Haag, J. T. Łopuszański, and M. Sohnius. All possible generators of supersymmetries
of the s-matrix. Nuclear Physics B 88(2), 257 (1975).

[20] S. J. J. Gates. Superspace, or One thousand and one lessons in supersymmetry (West-
view Press, 1999).

[21] K. Peeters. Cadabra2: computer algebra for field theory revisited. Journal of Open
Source Software 3(32), 1118 (2018). URL https://doi.org/10.21105/joss.01118.

[22] P. Kuusela. ”gammamap” - a mathematica package for clifford algebras, gamma matrices
and spinors (2019). 1905.00429.

[23] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A fast dynamic language
for technical computing (2012). 1209.5145.

[24] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to
numerical computing (2015). 1411.1607.

[25] Y. Korovin, S. M. Kuzenko, and S. Theisen. The conformal supercurrents in diverse
dimensions and conserved superconformal currents (2016). 1604.00488.

[26] O. Aharony. A brief review of ‘little string theories’. Classical and Quantum Gravity
17(5), 929 (2000). URL https://dx.doi.org/10.1088/0264-9381/17/5/302.

[27] S. Chakraborty, A. Giveon, and D. Kutasov. Comments on single-trace tt̄ holography
(2023). 2303.12422.

