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Abstract

Artificial intelligence and machine learning (AI-ML) al-
gorithms gave a new direction to the problem of image
classification. All practical applications are nowadays ap-
plying AI-ML algorithms for image classification. Con-
volutional neural network (CNN) and its varieties rapidly
became researcher’s first choice for computer vision related
applications. Recently many implementations of hard-
ware accelerators for CNN are reported in literature. The
current work exploits the opportunities for improvements
and proposes a novel very large scale integrated circuit
(VLSI) architecture for classic CNN model for classifica-
tion of gray-scale images. The proposed architecture is
validated using field gate programmable array (FPGA)
platform for classification of handwritten digits and hand
gestures. The architecture is implemented on both Artix7
and Zynq FPGA board. This work achieves 96% classifi-
cation accuracy for digits detection and 97% accuracy for
gesture images using same CNN model with pre-defined
filters in the convolution stage. Proposed architecture
consumes less hardware resources compared to state-of-
the-art works by using a single vector multiplication unit
(VMU) for both convolution-pooling stage and fully con-
nected network. Architecture supports parallel convolu-
tion and pooling operation and achieves processing speed
of ≈16 µs per image frame of size 28×28. Also, the archi-
tecture is scalable and supports deep learning where more
number of convolution-pooling stages may be used.
Keywords: Convolutional Neural Network, Hand-

Written Digit Recognition, Gesture Detection, Machine
Learning, Field Programmable Gate Array (FPGA)

1 Introduction

Image classification is one of the prominent research prob-
lem in the domain machine learning (ML). Few applica-
tions can be named as categorization of vehicles [1] for
traffic control, hand written digit recognition [2], object
detection [3], classification of RADAR images [4] etc. Var-
ious algorithms and techniques are reported in literature
for efficient classification of images. Out of these ML al-
gorithms, convolution neural network (CNN) is a crucial
neural network (NN) for image classification. Over the
few years, many researchers have tried to implement the
CNN technique on hardware platform. Initially, CNN was
implemented on central processing units (CPUs) and then
realized using graphics processing units (GPUs). But it
has been noticed that reconfigurable hardware like field

gate programmable arrays (FPGAs) have more power to
accelerate the parallel processing involved in CNN. Grad-
ually, many research works published focusing FPGA im-
plementation of CNN.

Few implementations are either ARM controller based
or realized using high-level synthesis (HLS). A high-level
language based accelerator for convolution layer is re-
ported in [5]. Another Vivado HLS based implementation
is reported in [6]. Skynet model for CNN is implemented
on ARM processor based FPGA in [7]. A FIFO based
accelerator for CNN is presented in PYNQ board based
implementation [8]. An ARM controller based accelerator
for CNN is reported in [9]. Another work on FPGA based
CNN accelerator is reported in [10]. Authors in [11] tried
to optimize the FPGA implementation of CNN accelerator
by exploiting sparsity in weight matrix and also by using
hierarchical memory organization. CNN is implemented
on FPGA through Vivado HLS software for traffic light
image classification in [12]. Handwritten digits classifier is
implemented on FPGA using SIMULINK platform in [13].
A ZCU102 development board based specialized accelera-
tor is reported in [14] that supports parallel execution of
convolution layers. An ResNet like structure of CNN is
implemented on ZCU102 device for RADAR signal pro-
cessing in [4] using HLS.

Authors in [2] implemented CNN on Intel FPGA for
detecting handwritten digits using MNIST dataset and
achieved 90% accuracy. Another FPGA implementation
of CNN is reported in [15] for pattern recognition. FPGA
Implementation of processing element unit in CNN accel-
erator using Modified Booth multiplier and Wallace tree
adder on Uniwig architechture is reported in [16]. Re-
searchers have presented FPGA based CNN module for
the recognition of traffic sign in advanced driver assistance
system (ADAS) in [1]. CNN is implemented on FPGA for
face recognition in [17]. Another FPGA implementation
of CNN is reported in [18]. A multi-stage data flow imple-
mentation of CNN accelarator for 3-D images for object
recognition is presented in [19]. FPGA implemented CNN
processor reported in [3] used for unmanned aerial vehicle
(UAV) object detection. CNN accelerator is used for envi-
ronmental sound classification and implemented on FPGA
in [20]. A version of MobileNet structure is implemented
on FPGA for image classification in [21]. CNN also can
be used for pattern detection from images [22].

Authors in [23] tried to reduce the computational com-
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plexity using Winograd’s 2-D Minimal filtering algorithm.
In [24], authors have demonstrated a stochastic based deep
neural network system that has nearly the same accuracy
as conventional binary implementations. An CNN accel-
erator is proposed in [25] where multiplication operations
are replaced with shift operations to reduce complexity.
A roofline-model-based method to accelerate the perfor-
mance of FPGA implemented CNN processor is reported
in [26] where authors used floating point to represent the
data.
An efficient FPGA implementation of AlexNet CNN

structure is reported in [27] for real time object detection.
Here, authors have shown accelerators for both convolu-
tion and fully connected layers. Systolic multipliers were
used in [28] to improve the performance of matrix multi-
plications in CNN. ZynqNet CNN architecture is imple-
mented on FPGA to increase the processing speed in [29].
VGG16-SVD model of CNN is implemented on embedded
FPGA platform like ZYNQ in [30]. An application specific
integrate circuit (ASIC) implementation of reconfigurable
processor for deep neural networks (DNN) is reported in
[31] which implements VGG-16 and AlexNet architecture
of CNN.
Even though plenty of works are reported in literature

on hardware implementation of CNN based image clas-
sification, there are scopes of improvement. The major
contributions of this research are

• An innovative hardware accelerator for CNN is pre-
sented which is very fast and consumes minimal hard-
ware resources.

• The proposed hardware accelerator supports any
number of convolution-pooling layers and thus sup-
ports for DNN based image classification.

• A method of sharing hardware for vector inner prod-
ucts in convolution stage as well as in fully connected
layers is proposed.

• Maximum resource sharing and the proposed serial-
parallel accelerator for convolution-pooling step
makes the proposed architecture efficient in terms of
resource utilization and power consumption compared
to other works.

The manuscript is organized in five sections. The litera-
ture review on state-of-art works on hardware implemen-
tation of CNN is presented in Section I. The theoretical
background behind the CNN technique is discussed in Sec-
tion II. Section III presents the proposed work in details
and all the architectures are illustrated here. Section IV
discusses the experimental set-up and proposed design is
also analysed in this section. Lastly, conclusive remarks
are made in the last section (Section V).

2 Theoretical Background

Many models of CNN for image classification are pro-
posed over the years like LeNet, AlexNet, VGGNet, Mo-
bileNets etc. A basic LeNet kind of model is implemented
in this work which is good for detecting sparse images
like handwritten digits and gestures. CNN based image

classification is divided into two major blocks which are
convolution-pooling network (CPN) and fully connected
network (FCN). Overall CNN model structure is shown
Fig. 1 and many basic applications use this kind of CNN
models. Square image is considered here for simplification
of illustration but images can be of any size practically.

In the CPN block, there may be many two dimensional
convolution stages. In a convolution stage, a 2-D image
(I ∈ Rn×n) is convoluted with a filter (f) of size λ×λ and
resulted another image Ic. The function for 2-D convolu-
tion is shown in Algorithm 1. The size of filter can vary
based on application to application. Common choices are
3× 3, 5× 5, 7× 7 etc.

Each convolution stage is associated with a pooling
stage or sub-sampling stage. The convoluted image (Ic)
is converted to a sub-sampled image (Ip) by finding max-
imum, minimum or by performing averaging operation on
particular window. Max pooling technique is adopted in
this work and a general function is shown in Algorithm 2.
The size of this window is famously known as stride (s).
Stride of 2 is selected here this means the window size is
2× 2. An n×n image is converted to n

2 ×
n
2 after pooling

operation.
The overall CNN algorithm is shown in Algorithm 3.

The CPN block provides a flattened vector (y ∈ Rn5×1)
to the FCN block. FCN block is constituted of two stages,
input layer with n6 nodes and output layer with n7 nodes.
Input layer takes y vector and produces another vector
(z1) of size n6 × 1. Flattened vector y is multiplied by
a weight matrix of W1 ∈ Rn5×n6 and added with a bias
vector b1 ∈ Rn6×1.

Activation functions are integral part of CNN models.

Algorithm 1 Function for 2-D Convolution (Ic =
conv(I, f))

Input: Input image I ∈ Rn×n and filter kernel f ∈ Rλ×λ.
Output: Convoluted image Ic ∈ R(n−λ−1)×(n−λ−1).
1: for i← 1 to (n− λ− 1) do
2: for j ← 1 to (n− λ− 1) do
3: tmp← 0
4: for k ← 1 to λ− 1 do
5: for l← 1 to λ− 1 do
6: tmp = tmp+ I(i+ k − 1, j + l − 1) · f(k, l)
7: end for
8: end for
9: Ic(i, j) = tmp

10: end for
11: end for

Different features are extracted from the images based on
the variety of activation functions. Activation functions
are applied on output of every layer in the FCN block.
CPN block also sometimes uses activation functions for
better results. Commonly used activation functions are
rectified linear unit (ReLU), sigmoid function, softmax
function etc. Proposed work uses ReLU function for hav-
ing less complexity in hardware implementation. Vector
z1 from the input layer is passed through a ReLU function
to produce another vector r1.
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Figure 1: Overall model for convolutional neural network for handwritten digit recognition.

Similar computation is carried away in the output layer
also. Output layer receives the vector r1 and produces
another vector z2 of size n7 × 1. The vector r1 is multi-
plied with weight matrix W2 ∈ Rn6×n7 and added with
bias vector (b2) of size n7 × 1 to produce output vector
z2 which is again passed to ReLU function to generate
r2 vector. Finally, r2 vector is passed to a sort function
which finds index of the maximum value present in the r2
vector. This index represents the detected class for the
image database.

Algorithm 2 Function for max pooling (Ip =
max pool(Ic, s))

Input: Input image Ic ∈ Rn×n and stride number (s). s
is even for even n and odd for odd value of n.

Output: Image after max pooling Ip ∈ R(n/s)×(n/s).
for i← 1 to (n/s) do

for j ← 1 to (n/s) do
tmp← 0
Set rw = ((i− 1) · s+ 1) : (i · s)
Set cl = ((i− 1) · s+ 1) : (i · s)
Ip(i, j) = max(I(rw : cl, rw : cl))

end for
end for

3 Proposed Work

The proposed architecture is shown in Fig. 2. and it has
three major blocks viz. vector multiplication unit (VMU),
CPN block, and FCN block. The VMU block is shared
by both CPN and FCN blocks. The input image can be
directly fed to the CPN block or can be passed through a
pre-processing block which is not shown here. Here, vector
p denotes the pixels belonging to the λ×λ window selected
during convolution. All three blocks are described in three
sections below.

3.1 Vector Multiplication Unit

A VMU block is proposed in this work which per-
forms vector-multiplication operations involved in the
FCN block and also performs multiplication between im-
age pixels in a particular window and filter co-efficients.

Algorithm 3 Pseudo code for CNN based image classifi-
cation.

Input: Input image I ∈ Rn×n, stride value (s), and filters
(f1, f2, · · · , f8).

Output: Classified image index (idx).
for j ← 1 to 2 do
if j ← 1 then

for i← 1 to 4 do
Ijci = conv(I, fi)

Ijpi = max pool(Ijci, 2)
end for

else
for k ← 1 to 4 do

for l← 1 to 4 do
Ijckl = conv(I

(j−1)
pk , fl+4)

Ijpkl = max pool(Ijckl, 2)
end for

end for
end if

end for
z1 = W1 · y + b1
r1 = ReLU(z1)
z2 = W2 · r2 + b2
r2 = ReLU(z2)
idx = sort(r2)

Convolution
and Pooling
Network

Vector
Multiplication

Unit

Fully
Connected
Network

ip1 ip2 ip3 ip4

in image p
vp

mb out2

idx

Figure 2: Overall proposed architecture image classifica-
tion using CNN.
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Figure 3: Proposed vector multiplication unit.

Thus same VMU block, shown in Fig. 3, is shared by CPN
and FCN block. This way maximum resource sharing is
obtained.
The whole VMU block is capable of multiplying two

vectors of length 64 and divided into four IP 16 blocks.
Each IP 16 block is capable of multiplying two vectors of
length 16. The IP 16 blocks are used during the convo-
lution process and the whole VMU block is used during
computation of fully connected layers. VMU has total 5
outputs where four inner product outputs are from IP 16
blocks. Latency of the IP 16 blocks is of l1p = 6 clock cy-
cles and total latency (lvmu) of the VMU block is 8 clock
cycles.

3.2 Convolution-Pooling Network

Proposed architecture for CPN block is shown in Fig. 4.
Initially input image is written in the img ram block from
the image sensors. Image pixels are serially sent to the
window op block for window formation. The pixels from
the k×k window are sent in parallel to the IP 16 blocks for
computing convolution values. The convoluted image pix-
els are simultaneously sent to the mx pool blocks. Four
mx pool blocks are placed corresponding to four IP 16
blocks. Convolution and pooling operations runs in par-
allel having gape of few clock cycles.
The output data samples from the first convolution-

pooling stage are written to membank a which is having
four memory elements to support four pooling blocks. The
ram blocks from membank a are read serially. Data sam-
ples from ram1 are read and fed to img ram block again to
start the next phase convolution operation. Output of the
next phase convolution will again go through IP 16 and
mx pooling blocks. Final output data samples of the next
convolution stage are written to membank b which is also
having four memory elements. Once the convolution op-
eration is completed for data samples stored in ram1, 2nd
phase convolution operation is started on samples stored in
ram2. This way all the elements of membank a are read.
All the outputs in the 2nd convolution-pooling stage are
written to membank b.
The pooling block is placed just after the IP 16 blocks

to reduce the storage requirement. The size ofmembank a
is more compared to size of membank b. Major opera-
tions that this block performs are 2-D convolution, pool-
ing and temporary data storage. All these operations are

explained below in detail.

3.2.1 ConvolutionThe proposed architecture for 2-D
convolution operation is depicted in Fig. 4. The 2-D
convolution operation can be divided into two steps, win-
dowing operation and multiplication of window pixels with
filters. The multiplication of pixels belonging to particular
window and the filter co-efficients are performed by IP 16
blocks. The architecture supports simultaneous 2-D con-
volution with four λ×λ filters where λ = 3 chosen for this
work. The advantage of simultaneous convolution is that
same image is not required to be read every time. If the
convolutions were separately done, then input image has
to be read four times. This way window operation time for
image is saved but number of IP 16 blocks are increased.
The convolution architecture is mainly based on the ar-

chitecture of window op block which is shown in Fig. 5.
The low-cost architecture reported in [32] is adopted in
this work. Register based window operation architecture
reported in [17] is not flexible for variable image sizes.
This is why memory based architecture is preferred which
supports any image size by changing size of the address
counters. This block forms the window of λ×λ pixels and
these pixels are sent to the IP 16 blocks. For convolu-
tion, outputs from the input image are parallely computed
through four IP 16 blocks.

This work uses pre-defined filters [33] where four filters
are used in the first stage and four filters are used in the
second stage. The first stage filter co-efficients are

f1 = {1, 0,−1, 1, 0,−1, 1, 0,−1} (1)

f2 = {1, 1, 1, 0, 0, 0,−1,−1,−1} (2)

f3 = {1, 2, 1, 0, 0, 0,−1, 2,−1} (3)

f4 = {−1, 2,−1, 0, 0, 0, 1, 2, 1} (4)

The second stage filter co-efficients are

f5 = {−1,−1,−1, 2, 2, 2,−1,−1,−1} (5)

f6 = {−1, 2,−1,−1, 2,−1,−1, 2,−1} (6)

f7 = {2,−1,−1,−1, 2,−1,−1,−1, 2} (7)

f8 = {−1,−1, 2,−1, 2,−1, 2,−1,−1} (8)

The multiplication operation between a filter and an image
window is performed by IP 16 blocks. Selection of filters
in different stages are performed by a multiplexer banks
placed before VMU block. For an n × n image, (n − 1)
rows will be stored in the temporary buffer memory. In
this work, 3×3 window is used for convolution and IP 16
block has 4 pipeline stages. Convolution operation has
total latency of lip+3 clock cycles where lip is the latency
of the IP 16 block. Thus total convolution process takes
tcnv = n2 + lip+ 3 clock cycles for completion.

3.2.2 PoolingA simple architecture for max pooling is
proposed in this work and shown in Fig. 6. It uses one
temporary memory which is capable of storing one row of
image. Only alternate rows of convoluted image are writ-
ten in the memory. For example, first 1st row is written to
the memory. Second row is then directly going to the reg-
isters and simultaneously the first row is also read. In the
second cycle 3rd row will be stored in the memory and 4th
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Figure 4: Proposed architecture for convolution and pooling in CNN.
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Figure 6: Proposed structure for max pooling.

row will be fed directly to registers. Pooling block com-
putes maximum of all pixels present in a 2× 2 window.
An basic network (BN) block architecture, shown in Fig.

10, is designed to calculate maximum of two elements.
First BN block computes maximum of 1st two elements of
2 × 2 window and stores in a register. In the next clock
cycle, first BN block computes maximum of remaining two
elements. Second BN block, compares between previously
stored maximum value and newly computed value. The
pooling operation is done by serially accessing the rows
of convoluted images. For an n × n image, n/2 columns
are required to be stored in temporary memory while n/2
columns are read directly. Thus total tpl = n2 + lpl clock
cycles are required to complete the pooling process with
latency of lpl = (2n+ 2) clock cycles.

3.3 Fully Connected Network

The proposed architecture of FCN block is shown in Fig.
7. The serial-parallel architecture supports any number of
fully connected layers. Same VMU block is used in this
architecture to do the vector-matrix multiplications. The

multiplication between input vector and the weight ma-
trix is performed in many phases to have less hardware
consumption. Four 2:1 multiplexer banks are placed just
before VMU block. The control signal cnv mode selects
image pixels and the filter co-efficients. The control sig-
nal nxt cnv selects 2nd set filter co-efficients. Big arrows
denote vectors in the multiplexer banks.

The FCN block receives flattened vector samples from
membank b block of convolution and pooling block. Mem-
ory elements in membank b block are read serially. Serial
data samples are converted to parallel data vector through
two register banks. Data samples are written to reg bank1
first and then to reg bank2. Again the remaining samples
are written to reg bank1 and then to reg bank2. The
control signal phase selects between two reg banks. Gap
between two writing cycles is maintained to support the
consecutive reading of weight matrix blocks from weight
memory block. Other blocks in the FCN block are illus-
trated below.

3.3.1 Weight MemoryThe weight matrices are stored in
weight mem memory block. The weight matrices are con-
stant and thus only read only memory (ROM) elements
are used in this memory block. The multiplication of vec-
tors of bigger sizes are folded by the VMU unit of lesser
size. Thus the weight memory has to be organized prop-
erly. The organization of the weight mem memory block
is shown in Fig. 8. Both W1 and W2 weight matrices are
stored in a single memory block. The organization of the
weight mem memory block is shown for handwritten digit
recognition problem. Total 64 ROM elements are used
here and each ROM can store 1100 words. The shaded
area denotes the memory locations filled with zeros.

3.3.2 Accumulator BlockMultiplication between a vec-
tor and the weight matrix is performed in many phases
with the help of accumulator block shown in Fig. 9. The
partial inner products are stored in a temporary memory
block named mem temp in all phases except in the last
phase. The temporary products are read from mem temp
block and added with current inner products. Once the fi-
nal vector-matrix product is obtained, bias values are read
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Figure 7: Proposed architecture for the FCN block
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Figure 8: Proposed arrangement of the weight memory.

from mem bias block and added. Accumulator needs one
clr signal to clear the register at initial stage and one mul-
tiplexer is placed to send zeros in the last phase of accu-
mulation. Here a single mem bias memory holds all the
bias vectors.

3.3.3 Activation FunctionReLU activation function is
used in all the layers of FCN block. This is because sim-
plicity of ReLU function in hardware implementation and
accuracy is also within acceptable range. The ReLU func-
tion is shown as

f(x) = max(0, x) (9)

ReLU function returns x if x is greater than zero. A single
multiplexer is enough to implement the ReLU function.

3.3.4 Sort BlockA sort block, shown in Fig. 10, is placed
at the final stage of FCN block. Once the computation is
completed for all the layers in FCN block, the serial data
samples from the activation function block are fed to the
sort block. The indx in passes digit indices from 0 to 10
and must be in sync with the data stream (data in). This
block gives the index of the maximum data present in the
serial stream. The index (idx) denotes the identified class

+

reg

reg

+

mem bias

reg

mem temp

0

1
0

nxt lyr

Figure 9: Proposed architecture for the accumulator block.

of the images. Major components of the BN block are a
comparator and a multiplexer. Indices are registered in
the fdc block using the less than (lt) control signal.

3.4 Support for Deep Neural Network

The proposed architecture can be easily adopted for DNN
based image classification using CNN. In the classifica-
tion of more complex images, CNN may use more num-
ber of convolution and pooling layers. Also, one or more
hidden layers may exist in the FCN. The proposed archi-
tecture uses two kinds of memory banks membank a and
membank b. Present work uses two convolution-pooling
layers. Output of first convolution-pooling layer is stored
in membank a whereas output of second convolution-
pooling layer is stored in membank b memory bank. In
case of an additional convolution-pooling layer, convo-
lution and pooling will be applied on data stored on
membank b and should be stored in membank a. This
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means, in odd number of convolution-pooling layer data
will be stored in membank a and in even number data
will be stored in membank b. A 2:1 multiplexer can
switch data transfer to the img ram between mb out1 and
mb out2.
The FCN block also supports more number of hidden

layers. The size of the weight matrix will vary based on
the number of layers in the FCN. Based on the given size
of VMU, the number of loops in calculation of output will
increase. The size of VMU can be increased to reduce
number of iterations. To support increased size of VMU,
size of reg bank and size of mux bank are required to be
increased. Also, data width of the accumulator block is
also may needs increment.

4 Experimental Setup and Performance Analysis

The proposed architecture for CNN based handwritten
digit classifier is validated by taking popular MNIST data
base for handwritten digits ranging from 0 to 9. The di-
mension parameters used for the CPN block of CNNmodel
are n = 28, n1 = 26, n2 = 14, n3 = 12, and n4 = 6. In the
FCN block, size of the flattened vector is 576×1, 120 nodes
were used in the input layer, and the output layer has only
10 nodes corresponding to 10 different digits. Proposed
CNN model achieves 96% accuracy in case of digit recog-
nition.
A free data base on hand gesture recognition from Kag-

gle is also used to verify the proposed architecture. Orig-
inal size of the images is 640 × 240 but images were con-
verted to the size of 28× 28 for verification. An accuracy
of 97.9% is achieved for the case of gesture recognition.
Python based software analysis were carried out in this
work and Verilog HDL is used to design the architecture
in Vivado.
An experimental setup for handwritten digit recogni-

tion is shown in Fig. 11. Proposed architecture uses 18-
bit data-width for representing the data samples and 10-
bits are used for precision. The processing subsystems
(PS) part is used for interfacing the USB camera and
programmable logic (PL) part used for implementing the
CNN part. Detailed analysis of the proposed design is

Figure 11: Experimental setup for real-time detection
of handwritten digits using proposed architecture imple-
mented on Zynq FPGA.

tcnv1 cycles

Convo 1 Convo 2 Convo 3 Convo 4 Convo 5

Pooling 1 Pooling 2 Pooling 3 Pooling 4 Pooling 5

tgp

tgp1

tcnv2

tpl1 cycles tpl2

Figure 12: Scheduling of all convolution and pooling op-
erations in different stages of CNN.

carried out in the following sub-sections.

4.0.1 Processing TimeThe estimation of processing time
is one of the major metric that should be analysed. Pro-
cessing time of all the blocks are analysed in this section.
Scheduling of the operations like convolution and pooling
are performed such a way so that in no time span a block
should be in idle mode. The writing of image pixels in
the img ram block and first convolution operation can be
started simultaneously with a gap of one clock cycle.

The scheduling of the different convolution and pooling
operations is shown in Fig. 12. The first convolution op-
eration completed in tcnv1 clock cycles. First pooling op-
eration can be started just after a gap of tgp1 = 2n+lip+3
cycles. Then after tpl1 clock cycles first pooling operation
can be completed. Second phase convolution operation
can not be started immediately as size of the convoluted
image after first convolution is less than the input image.
Second phase convolution operation can be started after
a gap tgp clock cycles and value of this is nearly equal
to n clock cycles. Other convolution operations can be
started immediately just finishing of the previous convo-
lution operation. Similarly for the second phase pooling
operations.

The FCN block can only operate when the last con-
volution operation i.e. Convo 5 in Fig. 12 is completed.
Matrix-vector multiplications in FCN block are performed
in different phases. For the case of hand written digit
recognition, multiplication between W1 matrix and flat-
tened vector (y) is performed in 9 phases. Each phase cor-
responds to multiplication of 120 × 64 matrix and 64 × 1
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Table 1: Estimation of hardware complexity

Blocks Mult Comp Add sub Reg Mux/DeMux

IP 16 16 0 15 31 0
VMU 64 0 63 127 0

mux bnk 0 0 0 128 256
accumulator 0 0 2 3 1

sort 0 1 0 3 1
window op 0 0 0 9 3
mx pool 0 2 0 4 2
Others 0 0 0 1 8

Table 2: Estimation of memory elements.

Memory Elements
Word Per Cycle

BRAM Reg
Write Read

membank a 1 1 4× 14× 14 0
membank b 1 1 4× 12× 12 0
weight mem - 64 64× 1100 0
mem temp 1 1 64 0
mem bias − 1 586 0
row tmp 1 1 28 0
row tmp1 1 1 28 0
reg bank1 1 64 0 64
reg bank2 1 64 0 64

vector in input layer. The output phase computation is
achieved in two phases. The total processing time for in-
put layer is tfcn1 = (lvmu+1)+(8 ·120)+1+64. Here, 64
clock cycles are required to store the output values again
back to the reg bank block. Total processing time for the
output layer is tfcn2 = (lvmu + 1) + (2 · 10) + 2 including
the time spend in the sort block.
The estimation of the overall processing time can done

by the following equation

tov = tcnv1 + tgp + 4× tcnv2 + tfcn1 + tfcn2 (10)

Total processing time for handwritten digit recognition
problem of detecting a 28× 28 image is 2706 clock cycles.
Taking maximum frequency of 173.91 MHz, the processing
time is calculated as tov = 2706 · 5.75ns = 15, 560ns. It
can be said that the CNN processor proposed in this work
takes 15.56 µs to process one 28×28 image of handwritten
digits. Approximately the proposed processor can process
≈ 64k handwritten digits of size 28× 28 in just 1 second.

4.0.2 Resource ConsumptionAn estimation of resource
consumption of the proposed architecture in terms of ba-
sic blocks is shown in Table I. This manual estimation
of the resources is required to have a clear picture of the
overall architecture. It can be seen that maximum 64 mul-
tipliers are used in VMU block which is the major block of
the architecture. The block with most combinational logic
load is the mux bnk. The pipeline registers are inserted in
suitable places to keep the maximum combinational delay
less than or equal to the delay of a multiplier.
Memory consumption overhead is another parameter

Table 3: Design performance for the proposed architecture
implemented on two different boards.

Memory Elements
Artix Board Zynq Board

Values Util(%) Values Util(%)

Slice LUT 3789 5.98 3870 21.99
Slice Reg 3301 2.6 35200 9.38

Occupied Slice 1445 9.12 1502 34.14
RAMB18 115 42.59 115 95.83
DSP48 64 26.67 64 80

Dynamic Power 0.399 W - 0.413 0

Figure 13: Estimation of power of the proposed architec-
ture based on Vivado tool.

that decides the performance of an architecture. Esti-
mation of memory consumption of the proposed architec-
ture is shown in Table II for handwritten digit example.
The memory blocks weight mem and mem bias are re-
alized using the ROMs. Other memory blocks such as
membank a, membank b etc. are realized as dual port
memory (DPM) block. The reg bank block is realized
entirely using registers to make serial data stream to a
parallel data vector. The size of the memory elements in
Table II is shown with respect to the example of hand-
written digit recognition for image size of 28× 28.

The FPGA implementation performance of the pro-
posed architecture is shown in Table III. Here, two type
of FPGAs are used to demonstrate the performance com-
parison. Artix7 FPGA board (xc7a100tftg256-2) has more
resources compared to Zynq system on chip (SoC) board
(XC7Z010). Resource consumption on both the boards is
almost same but higher maximum frequency is achieved
in case of Artix7 FPGA board. This is because of more
area available for routing in Artix7.

4.0.3 Power ConsumptionThe architecture for CNN is
proposed such a way so that it consumes less area as well
as low power. The power consumption of the proposed
design is shown in Table II on both kind of FPGAs. The
low power consumption of the proposed design is due to
two main attributes followed in the design. Firstly, all
the memory elements are equipped with controlled enable
mechanism. The memory elements were made active when
it was required. During other time they were inactive. Sec-
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Table 4: Comparison with existing works on handwritten
digit recognition using CNN.

Blocks [6] [34] [35] [2] This Work

FPGA Board xc7vx485 xc7a100 ZYNQ ZC702 Cyclone 10 xc7a100
Frequency (MHz) 150 300 166 150 173.3

Time (ms) 0.0254 0.041 0.151 0.0176 0.0157
DSP 638 0 95 274 64
Reg 66346 106400 27664 48765 3301
LUT 51125 15769 388361 12588 3789

Accuracy 96.8 90 99 97.57 96

ondly, sharing of resources helped to save extra resources
which consumes power. The VMU block is shared by FCN
block as well as by the CPN block. A detailed analysis of
the power consumption is shown in Fig. 13.

4.0.4 Comparison with Existing WorksA substantial col-
lection of works reported in literature on hardware imple-
mentation of CNN. Few works focused only on convolution
part of CNN while few implemented overall image classi-
fication problem using CNN. The current research work
also focuses on implementation of the whole CNN based
classifier. Proposed architecture is compared with few re-
cent works in Table IV.
The proposed work is hardware efficient as well as have

lesser processing time compared to the work reported in
[6]. Similar statement can be said regarding the work
reported in [34] where same FPGA target is used. The
ZYNQ based architecture [35] consumes more resources
at less processing time compared to the work proposed
here. Intel FPGA based implementation [2] has similar
processing time but consumes higher resources. Overall,
it can be concluded that the proposed design is hardware
efficient compared to other works having better processing
time.

5 Conclusion

A low cost yet faster architecture of CNN is proposed in
this work. The proposed architecture is implemented for
2 convolution-pooling layers and two layers in the fully
connected network. But this architecture is scalable and
supports any number of convolution-pooling layer and hid-
den layers in fully connected network. Thus image clas-
sification problems using DNN also can be solved using
this architecture. Grayscale images like handwritten dig-
its and gesture images were considered in this work but
can be extended for color images also. Pre-defined filters
are used in this work but architecture is designed for gen-
eral case. Architecture consumes less hardware resources
as it uses a single VMU block for all kinds of vector inner
products. But processing speed is not compromised and
dynamic power consumption is also low.
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