
Isumiro

Documentation

Android and iOS App



1. Introduction

Thank you for your interest in Isumiro.

This guide was implemented to help you set up this project successfully. For the process to go

smoothly, it’s essential to follow all the steps in this file.

Isumiro is a classified ads platform for iOS and Android made entirely with Flutter. Flutter is a

mobile application framework created by Google to make cross-platform applications with one

single codebase.

Isumio uses Firebase as the backend service. Firebase, another product by Google, is a

backend service that offers an online database, authentication service, storage, and much more.

This project includes one client app with some admin features and Firebase functions to run on

the server.

2. Project Structure

The project is structured in these main different pages (these are the screens the user will
interact with):

● SpashPage: this page displays the logo and checks if the user is logged in or not. If
logged in, it redirects to the dashboard page, otherwise, it redirects to the login page.

● LoginPage: this page signs in the user using phone authentication.
● RegistrationPage: this page will be accessed when the user logs in for the first time and

will allow him to complete his profile.
● DashboardPage (bottom navigation): this is a holder of other pages, and is used to

display the bottom navigation menu.
○ HomePage: this page displays in order from top to bottom, a search bar, a few

categories that might interest the user, and a grid of items susceptible of
interesting the user.

○ ChatPage: it displays a list of conversations started by the user in order to buy
something, or by another user interested in the item the user is selling.

○ SellPage: this page allows the user to add an item for sale, by choosing a
category, giving a description of the product, and uploading the pictures.

○ AdPage: this is a page listing the user's items on sale.
○ AccountPage: this is a page used by the user to manage his account.

● SingleChatPage: this page allows two users to exchange about an item in order to
conclude a sale.

● ItemPage (editable): this is a detail page of an item uploaded on the app.

2



● SearchPage: this page is used to search for items on the app.
● DisabledPage: To be displayed when the user's account has been disabled.
● UserPage: this page will display all the ads running for a single user.

3. Prerequisite

Some development knowledge will be needed in order to install Isumiro successfully. Here’s

what’s needed:

A. IDE for mobile and web development, we recommend VSCode

B. Flutter SDK and JDK with path setup on your local machine

C. Basic knowledge about Google and Firebase.

D. Basic knowledge of Google Admob

4. Environment Setup

To run the project, some environment setups are needed:

A. You’ll have to download and install Flutter on your system. You can check the

documentation on the following link: Install | Flutter
B. You’ll need to create an account with Firebase by following this link: Firebase | Google’s

Mobile and Web App Development Platform
C. You’ll need to create an account with Google Admob from this link: Google AdMob -

Earn More With Mobile App Monetization
D. You’ll have to download and install Node.js which you can do by following this link:

Node.js (nodejs.org)

5. Basic Setup
A. Download the compressed file provided and unzip it on your machine.

B. Unzip isumiro file containing the Flutter project

C. Open isumiro folder in VS Code or Android Studio

3

https://docs.flutter.dev/get-started/install
https://firebase.google.com/
https://firebase.google.com/
https://admob.google.com/home/
https://admob.google.com/home/
https://nodejs.org/en


D. Unzip isumiro_functions file which will be needed later

6. Firebase Setup
A. Go on and create a new Firebase project

B. Once created, You’ll get to the overview of your Firebase project

4



C. Upgrade your project from spark to blaze as you’ll need Firebase functions. If you don’t

you won’t be able to use cloud functions

5



D. Head to Build > Authentication to get started and enable phone authentication as it’s

the one used by the app for authentication and click save.

6



E. Head to Google Cloud console and select your project

F. Click on the navigation menu and select APis & services and then select enable api

and services

7

https://console.cloud.google.com/


8



G. Enable api " Play Integrity API".

9



H. That will make sure that phone authentication works without any issue

I. Head to Build > Firestore Database where you’ll need to create a configuration

collection and a settings document. Create first your database in production mode and

choose your database location.

10



J. Then Create a collection called configuration and add a document with an ID called

settings. Inside the settings document, add the following fields:

a. messageKey: a string value that will be used to encrypt chat messages. The

string must have 32 characters! Here’s an example of a value you can put it:

AeQrT87w#&%^!&YgZcqgfx%@&^#!#Yu>

11



b. useGoogleAds: a bool value that will decide whether to display or not Google

ads in the app. Set it to false for now.

c. version: a string value that will dictate whether users are forced to upgrade their

app, which will happen when the value is greater than the actual value of the user

app. For now, input 1.0.0

K. Head to Build > Storage and click Get Started. Start in production mode and set up

your storage location.

12



L. Now We will configure Firebase functions, Firestore rules and indexes, and Storage

rules. Unzip the download file from Envato and unzip the isumiro_functions file. Open the

decompressed folder isumiro_functions in VSCode.

a. In the terminal run npm install -g firebase-tools
b. Then run firebase login to login into your account

c. Run firebase init and enter Y when it asks you to override the previous project

d. On the list of features to configure, select, firestore, functions, and storage
using the space key

e. In the next step select Use an existing project and choose the project we

previously created in Firebase

f. When asked what to call Firestore rules, just press enter

g. When asked what to call Firestore indexes, just press enter

h. When asked to override any of the files, select no and continue

13



i. When asked whether to initialize a new codebase or override it, select

Overwrite, and press enter

j. Choose JavaScript as the language for cloud functions and press enter

k. Just press enter when it asks to use ESLint

l. When asked to override functions/package.json, Enter N and press enter

m. When asked to override functions/index.js, Enter N and press enter

14



n. When asked to override functions/.gitignore, Enter N and press enter

o. When asked to install dependencies enter Y and press enter and the

dependencies will start installing.

p. When asked what to call Storage rules, just press enter
q. Finally, run firebase deploy. You may need to run this command 2 times to be

successful

M. Head to Functions and click Get Started. You should see the functions we installed in the

previous step

15



7. Flutter Setup

Now that we’ve set up our Firebase projects, open the Flutter project in VS Code and follow
these steps to link it to Firebase.

A. Open pubspec.yaml file and run flutter pub get to download all the dependencies

B. Run dart pub global activate flutterfire_cli to install the flutterfire cli

16



C. Now run flutterfire configure . This will create the Firebase files needed to launch in

your production environment.

D. In the next step, select which project to link

E. Make sure that Android and iOS platforms are only selected and press enter

F. 3 files will be created: firebase_options.dart in lib folder, google-services.json in

android/app folder and firebase_app_id_file.json in ios folder

G. For the next step to work, You should add Java path to Windows environment variables

H. Open a terminal and run keytool -list -v -alias androiddebugkey -keystore
%USERPROFILE%\.android\debug.keystore to generate the SHA1 and SH256 of your

system. If it doesn't work, make sure java sdk is installed with the path environment well

set up. If it still doesn’t work, try this:

a. Go to this path or wherever you have your keytool.exe file like C:\Program
Files\Java\jre7\bin for example

b. Hold shift and right click -> then press Open command window here

c. The terminal will pop up, paste then the above keytool command

17



I. You may be asked to enter a password. If you’ve never entered a password, just press

enter or try android as the password

J. The following key will allow you to launch in debug mode. For more information on

debug and release keys check this post Authenticating Your Client | Google Play

services | Google for Developers

K. Go back to your Firebase project and go to project settings. Under General locate the

Android app and add the SHA1 and SHA256 previously generated.

18

https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth


8. Geolocalisation setup

This app relies heavily on localization as each ad is associated with its location. The location of
the user is picked up when the app is open. The app will then try to show relevant ads in a small
radius close to the user. If no ads are found, the radius will get larger and larger until ads are
found.

A. Get an API key at Google Maps Platform - Location and Mapping Solutions
B. Enable Google Map SDK for each platform.

a. Go to Google Cloud console
b. Choose the project that you want to enable Google Maps on. Here it’s going to

be the Firebase project created earlier
c. Select the navigation menu and then select "Google Maps".
d. Select "APIs" under the Google Maps menu.
e. To enable Google Maps for Android, select "Maps SDK for Android" in the

"Additional APIs" section, then select "ENABLE".
f. To enable Google Maps for iOS, select "Maps SDK for iOS" in the "Additional

APIs" section, then select "ENABLE".
g. Make sure the APIs you enabled are under the "Enabled APIs" section.

C. For more details, see Getting started with Google Maps Platform | Google for
Developers.

D. On Android. Specify your API key in the application manifest
android/app/src/main/AndroidManifest.xml

E. On iOS, specify your API key in the application delegate ios/Runner/AppDelegate.swift

19

https://mapsplatform.google.com/
https://console.cloud.google.com/
https://developers.google.com/maps/get-started#enable-api-sdk
https://developers.google.com/maps/get-started#enable-api-sdk


F. Go to lib/Helpers/Utils.dart and locate a function called getMapsKey(). Insert your key
there too.

20



9. AdMob setup

This document just covers how to link your Flutter project to Admob as it’s up to you where and
what kind of banner you want to show. If you don’t want to show Google Banner you can simply
set the useGoogleAds field in the settings document in the configuration collection to false.

A. Head to Google AdMob - Earn More With Mobile App Monetization and create an
Account

B. Clik on Apps in the side menu and create an Android app and an iOS App

C. Click on the Android app and go to app settings. There you should see the App ID. Copy
it

21

https://admob.google.com/home/


D. On Android, Specify your API key in the application manifest
android/app/src/main/AndroidManifest.xml

E. Click on the iOS app and go to app settings. There you should see the App ID. Copy it
F. In your app's ios/Runner/Info.plist file, add a GADApplicationIdentifier key with a

string value of your AdMob app ID, as identified in the AdMob web interface:

22



G. To display banners, you’ll have to create Ad units and add corresponding unit IDs
wherever a banner has been placed in the app or by adding your own banner.

H. If you want to know more about how to configure Admob, check this link: Get started |
Flutter | Google for Developers

23

https://developers.google.com/admob/flutter/quick-start
https://developers.google.com/admob/flutter/quick-start


10. Other Installation
● You can change your app package name by using a package named

change_app_package_name | Dart Package (pub.dev) which will make the job easier

for you. All you have to run is flutter pub run change_app_package_name:main
com.new.package.name where com.new.package.name is your new package name.

Note however that after doing this you will have to redo the flutter setup done earlier

● You can upload your own logo in the assets folder and use flutter_launcher_icons |
Dart Package (pub.dev) package to change the icons all over the app.

flutter_app_name | Dart Package (pub.dev) package will help you to change the name

of the app as well and flutter_native_splash | Flutter Package (pub.dev) to change

the splash screen.

● If you wish to use GitHub CI/CD for deployment, you’ll need to configure the

android-main-release.yaml file in the .github/workflows folder to create releases on

Github. Check this post for more info: Deploy your Flutter App to Firebase App
Distribution using GitHub Actions - Android (bernos.dev)

24

https://pub.dev/packages/change_app_package_name
https://pub.dev/packages/flutter_launcher_icons
https://pub.dev/packages/flutter_launcher_icons
https://pub.dev/packages/flutter_app_name
https://pub.dev/packages/flutter_native_splash
https://guillaume.bernos.dev/how-to-deploy-to-firebase-app-distribution/
https://guillaume.bernos.dev/how-to-deploy-to-firebase-app-distribution/

