
MongoDB

#mongodb

Table of Contents

About 1

Chapter 1: Getting started with MongoDB 2

Remarks 2

Versions 2

Examples 3

Installation 3

Hello World 6

Complementary Terms 6

Execution of a JavaScript file in MongoDB 7

Making the output of find readable in shell 7

Basic commands on mongo shell 8

Chapter 2: 2dsphere Index 9

Examples 9

Create a 2dsphere Index 9

Chapter 3: Aggregation 10

Introduction 10

Syntax 10

Parameters 10

Remarks 10

Examples 10

Count 10

Sum 11

Average 12

Operations with arrays. 13

Match 13

Remove docs that have a duplicate field in a collection (dedupe) 14

Chapter 4: Authentication Mechanisms in MongoDB 15

Introduction 15

Examples 15

Authentication Mechanisms 15

Chapter 5: Backing up and Restoring Data 16

Examples 16

mongoimport with JSON 16

mongoimport with CSV 16

Chapter 6: Backing up and Restoring Data 18

Examples 18

Basic mongodump of local default mongod instance 18

Basic mongorestore of local default mongod dump 18

Chapter 7: Bulk Operations 19

Remarks 19

Examples 19

Converting a field to another type and updating the entire collection in Bulk 19

Chapter 8: Collections 22

Remarks 22

Examples 22

Create a Collection 22

Drop Collection 23

Chapter 9: Configuration 24

Parameters 24

Examples 26

Starting mongo with a specific config file 26

Chapter 10: CRUD Operation 27

Syntax 27

Remarks 27

Examples 27

Create 27

Update 28

Delete 28

Read 29

More update operators 30

"multi" Parameter while updating multiple documents 30

Update of embedded documents. 31

Chapter 11: Getting database information 32

Examples 32

List all databases 32

List all collections in database 32

Chapter 12: Indexes 33

Syntax 33

Remarks 33

Examples 33

Single field 33

Compound 33

Delete 33

List 34

Index Creation Basics 34

Hashed indexes 36

Dropping/Deleting an Index 36

Get Indices of a Collection 37

Unique Index 37

Sparse indexes and Partial indexes 37

Chapter 13: Java Driver 39

Examples 39

Create a tailable cursor 39

Create a database user 39

Fetch Collection data with condition 39

Chapter 14: Managing MongoDB 41

Examples 41

Listing currently running queries 41

Chapter 15: Mongo as a Replica Set 42

Examples 42

Mongodb as a Replica Set 42

Chapter 16: Mongo as a Replica Set 44

Examples 44

Check MongoDB Replica Set states 44

Chapter 17: Mongo as Shards 46

Examples 46

Sharding Environment Setup 46

Chapter 18: MongoDB - Configure a ReplicaSet to support TLS/SSL 48

Introduction 48

Examples 48

How to configure a ReplicaSet to support TLS/SSL? 48

Create the Root Certificate 48

Generate the Certificate Requests and the Private Keys 48

Sign your Certificate Requests 49

Concat each Node Certificate with its key 49

Deploy your ReplicaSet 50

Deploy your ReplicaSet for Mutual SSL / Mutual Trust 50

How to connect your Client (Mongo Shell) to a ReplicaSet? 50

No Mutual SSL 50

With Mutual SSL 51

Chapter 19: MongoDB Aggregation 53

Examples 53

Aggregate query examples useful for work and learning 53

Java and Spring example 57

Get sample data 58

Left Outer Join with aggregation ($Lookup) 58

Chapter 20: MongoDB Authorization Model 60

Introduction 60

Examples 60

Build-in Roles 60

Chapter 21: Pluggable Storage Engines 61

Remarks 61

Examples 61

MMAP 61

WiredTiger 61

How to use WiredTiger Engine 61

In-memory 62

mongo-rocks 62

Fusion-io 62

TokuMX 62

Chapter 22: Python Driver 63

Syntax 63

Parameters 63

Examples 63

Connect to MongoDB using pymongo 63

PyMongo queries 63

Update all documents in a collection using PyMongo 64

Chapter 23: Querying for Data (Getting Started) 65

Introduction 65

Examples 65

Find() 65

FindOne() 65

Query Document - Using AND, OR and IN Conditions 66

find() method with Projection 68

Find() method with Projection 68

limit, skip, sort and count the results of the find() method 69

Chapter 24: Replication 71

Examples 71

Basic configuration with three nodes 71

Chapter 25: Update Operators 73

Syntax 73

Parameters 73

Remarks 73

Examples 73

$set operator to update specified field(s) in document(s) 73

I.Overview 73

II.What happen if we don't use update operators? 73

III.$set operator 74

Chapter 26: Upgrading MongoDB version 76

Introduction 76

Remarks 76

Examples 76

Upgrading to 3.4 on Ubuntu 16.04 using apt 76

Chapter 27: Upserts and Inserts 77

Examples 77

Insert a document 77

Credits 78

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: mongodb

It is an unofficial and free MongoDB ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official MongoDB.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/mongodb
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with MongoDB

Remarks

Data in the world started to grow tremendously after mobile application came in the market.
This huge amount of data became almost impossible to handle with traditional relational
database - SQL. NoSQL databases are introduced to handle those data where much more
flexibility came like variable number of columns for each data.

•

MongoDB is one of the leading NoSQL databases. Each collection contains a number of
JSON documents. Any data model that can be expressed in a JSON document can be easily
stored in MongoDB.

•

MongoDB is a server-client database. Server usually runs with the binary file mongod and
client runs with mongo.

•

There is no join operation in MongoDB prior to v.3.2, for various philosophical and pragmatic
reasons. But Mongo shell supports javascript, so if $lookup is not available, one can simulate
join operations on documents in javascript before inserting.

•

To run an instance in production environment, it's strongly advised to follow the Operations
Checklist.

•

Versions

Version Release Date

3.4 2016-11-29

3.2 2015-12-08

3.0 2015-03-03

2.6 2014-04-08

2.4 2013-03-19

2.2 2012-08-29

2.0 2011-09-12

1.8 2011-03-16

1.6 2010-08-31

1.4 2010-03-25

1.2 2009-12-10

https://riptutorial.com/ 2

https://www.mongodb.com/blog/post/joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction
https://www.mongodb.com/blog/post/joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction
https://www.mongodb.com/blog/post/joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction
https://www.mongodb.com/blog/post/joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction
https://docs.mongodb.com/manual/release-notes/3.4/
https://docs.mongodb.com/manual/release-notes/3.2/
https://docs.mongodb.com/manual/release-notes/3.0/
https://docs.mongodb.com/manual/release-notes/2.6/
https://docs.mongodb.com/manual/release-notes/2.4/
https://docs.mongodb.com/manual/release-notes/2.2/
https://docs.mongodb.com/manual/release-notes/2.0/
https://docs.mongodb.com/manual/release-notes/1.8/
https://docs.mongodb.com/manual/release-notes/1.6/
https://docs.mongodb.com/manual/release-notes/1.4/
https://docs.mongodb.com/manual/release-notes/1.2/

Examples

Installation

To install MongoDB, follow the steps below:

For Mac OS:

There are two options for Mac OS: manual install or homebrew.○

Installing with homebrew:
Type the following command into the terminal:

$ brew install mongodb

○

○

Installing manually:

Download the latest release here. Make sure that you are downloading the
appropriate file, specially check whether your operating system type is 32-bit or
64-bit. The downloaded file is in format tgz.

○

Go to the directory where this file is downloaded. Then type the following
command:

$ tar xvf mongodb-osx-xyz.tgz

Instead of xyz, there would be some version and system type information. The
extracted folder would be same name as the tgz file. Inside the folder, their would
be a subfolder named bin which would contain several binary file along with
mongod and mongo.

○

By default server keeps data in folder /data/db. So, we have to create that
directory and then run the server having the following commands:

$ sudo bash
mkdir -p /data/db
chmod 777 /data
chmod 777 /data/db
exit

○

To start the server, the following command should be given from the current
location:

$./mongod

It would start the server on port 27017 by default.

○

To start the client, a new terminal should be opened having the same directory as
before. Then the following command would start the client and connect to the

○

○

•

https://riptutorial.com/ 3

https://brew.sh/
https://brew.sh/
https://www.mongodb.com/download-center#community

server.

$./mongo

By default it connects to the test database. If you see the line like connecting to:
test. Then you have successfully installed MongoDB. Congrats! Now, you can
test Hello World to be more confident.

For Windows:

Download the latest release here. Make sure that you are downloading the appropriate
file, specially check whether your operating system type is 32-bit or 64-bit.

○

The downloaded binary file has extension exe. Run it. It will prompt an installation
wizard.

○

Click Next.○

Accept the licence agreement and click Next.○

Select Complete Installation.○

Click on Install. It might prompt a window for asking administrator's permission. Click
Yes.

○

After installation click on Finish.○

Now, the mongodb is installed on the path C:/Program Files/MongoDB/Server/3.2/bin.
Instead of version 3.2, there could be some other version for your case. The path name
would be changed accordingly.

○

bin directory contain several binary file along with mongod and mongo. To run it from other
folder, you could add the path in system path. To do it:

Right click on My Computer and select Properties.○

Click on Advanced system setting on the left pane.○

Click on Environment Variables... under the Advanced tab.○

Select Path from System variables section and click on Edit....○

Before Windows 10, append a semi-colon and paste the path given above. From
Windows 10, there is a New button to add new path.

○

Click OKs to save changes.○

○

Now, create a folder named data having a sub-folder named db where you want to run
the server.

○

Start command prompt from their. Either changing the path in cmd or clicking on Open
command window here which would be visible after right clicking on the empty space
of the folder GUI pressing the Shift and Ctrl key together.

○

Write the command to start the server:○

•

https://riptutorial.com/ 4

http://www.riptutorial.com/mongodb/example/2291/hello-world
https://www.mongodb.com/download-center#community

> mongod

It would start the server on port 27017 by default.

Open another command prompt and type the following to start client:

> mongo

○

By default it connects to the test database. If you see the line like connecting to: test.
Then you have successfully installed MongoDB. Congrats! Now, you can test Hello
World to be more confident.

○

For Linux: Almost same as Mac OS except some equivalent command is needed.

For Debian-based distros (using apt-get):

Import MongoDB Repository key.

$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv EA312927
gpg: Total number processed: 1\
gpg: imported: 1 (RSA: 1)

○

Add repository to package list on Ubuntu 16.04.

$ echo "deb http://repo.mongodb.org/apt/ubuntu xenial/mongodb-org/3.2
multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.2.list

○

on Ubuntu 14.04.

$ echo "deb http://repo.mongodb.org/apt/ubuntu trusty/mongodb-org/3.2
multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.2.list

○

Update package list.

$ sudo apt-get update

○

Install MongoDB.

$ sudo apt-get install mongodb-org

○

○

For Red Hat based distros (using yum):

use a text editor which you prefer.

$ vi /etc/yum.repos.d/mongodb-org-3.4.repo

○

Paste following text.

[mongodb-org-3.4]

○

○

•

https://riptutorial.com/ 5

http://www.riptutorial.com/mongodb/example/2291/hello-world
http://www.riptutorial.com/mongodb/example/2291/hello-world

name=MongoDB Repository
baseurl=https://repo.mongodb.org/yum/redhat/$releasever/mongodb-
org/3.4/x86_64/
gpgcheck=1
enabled=1
gpgkey=https://www.mongodb.org/static/pgp/server-3.4.asc

Update package list.

$ sudo yum update

○

Install MongoDB

$ sudo yum install mongodb-org

○

Hello World

After installation process, the following lines should be entered in mongo shell (client terminal).

> db.world.insert({ "speech" : "Hello World!" });
> cur = db.world.find();x=cur.next();print(x["speech"]);

Hello World!

Explanation:

In the first line, we have inserted a { key : value } paired document in the default database
test and in the collection named world.

•

In the second line we retrieve the data we have just inserted. The retrieved data is kept in a
javascript variable named cur. Then by the next() function, we retrieved the first and only
document and kept it in another js variable named x. Then printed the value of the document
providing the key.

•

Complementary Terms

SQL Terms MongoDB Terms

Database Database

Table Collection

Entity / Row Document

Column Key / Field

Table Join Embedded Documents

Primary Key Primary Key (Default key _id provided by mongodb itself)

https://riptutorial.com/ 6

https://docs.mongodb.com/manual/tutorial/model-embedded-one-to-many-relationships-between-documents/
https://docs.mongodb.com/manual/indexes/#default-id-index

Execution of a JavaScript file in MongoDB

./mongo localhost:27017/mydb myjsfile.js

Explanation: This operation executes the myjsfile.js script in a mongo shell that connects to the
mydb database on the mongod instance accessible via the localhost interface on port 27017.
localhost:27017 is not mandatory as this is the default port mongodb uses.

Also, you can run a .js file from within mongo console.

>load("myjsfile.js")

Making the output of find readable in shell

We add three records to our collection test as:

> db.test.insert({"key":"value1","key2":"Val2","key3":"val3"})
WriteResult({ "nInserted" : 1 })
> db.test.insert({"key":"value2","key2":"Val21","key3":"val31"})
WriteResult({ "nInserted" : 1 })
> db.test.insert({"key":"value3","key2":"Val22","key3":"val33"})
WriteResult({ "nInserted" : 1 })

If we see them via find, they will look very ugly.

> db.test.find()
{ "_id" : ObjectId("5790c5cecae25b3d38c3c7ae"), "key" : "value1", "key2" : "Val2
", "key3" : "val3" }
{ "_id" : ObjectId("5790c5d9cae25b3d38c3c7af"), "key" : "value2", "key2" : "Val2
1", "key3" : "val31" }
{ "_id" : ObjectId("5790c5e9cae25b3d38c3c7b0"), "key" : "value3", "key2" : "Val2
2", "key3" : "val33" }

To work around this and make them readable, use the pretty() function.

> db.test.find().pretty()
{
 "_id" : ObjectId("5790c5cecae25b3d38c3c7ae"),
 "key" : "value1",
 "key2" : "Val2",
 "key3" : "val3"
}
{
 "_id" : ObjectId("5790c5d9cae25b3d38c3c7af"),
 "key" : "value2",
 "key2" : "Val21",
 "key3" : "val31"
}
{
 "_id" : ObjectId("5790c5e9cae25b3d38c3c7b0"),
 "key" : "value3",
 "key2" : "Val22",
 "key3" : "val33"

https://riptutorial.com/ 7

}
>

Basic commands on mongo shell

Show all available databases:

show dbs;

Select a particular database to access, e.g. mydb. This will create mydb if it does not already exist:

use mydb;

Show all collections in the database (be sure to select one first, see above):

show collections;

Show all functions that can be used with the database:

db.mydb.help();

To check your currently selected database, use the command db

> db
mydb

db.dropDatabase() command is used to drop a existing database.

db.dropDatabase()

Read Getting started with MongoDB online: https://riptutorial.com/mongodb/topic/691/getting-
started-with-mongodb

https://riptutorial.com/ 8

https://riptutorial.com/mongodb/topic/691/getting-started-with-mongodb
https://riptutorial.com/mongodb/topic/691/getting-started-with-mongodb

Chapter 2: 2dsphere Index

Examples

Create a 2dsphere Index

db.collection.createIndex() method is used to create a 2dsphere index. The blueprint of a 2dsphere
index :

db.collection.createIndex({ <location field> : "2dsphere" })

Here, the location field is the key and 2dsphere is the type of the index. In the following example
we are going to create a 2dsphre index in the places collection.

db.places.insert(
{
 loc : { type: "Point", coordinates: [-73.97, 40.77] },
 name: "Central Park",
 category : "Parks"
})

The following operation will create 2dsphere index on the loc field of places collection.

db.places.createIndex({ loc : "2dsphere" })

Read 2dsphere Index online: https://riptutorial.com/mongodb/topic/6632/2dsphere-index

https://riptutorial.com/ 9

https://riptutorial.com/mongodb/topic/6632/2dsphere-index

Chapter 3: Aggregation

Introduction

Aggregations operations process data records and return computed results. Aggregation
operations group values from multiple documents together, and can perform a variety of
operations on the grouped data to return a single result. MongoDB provides three ways to perform
aggregation: the aggregation pipeline, the map-reduce function, and single purpose aggregation
methods.

From Mongo manual https://docs.mongodb.com/manual/aggregation/

Syntax

db.collection.aggregate(pipeline, options)•

Parameters

Parameter Details

pipeline array(A sequence of data aggregation operations or stages)

options document(optional, available only if pipeline present as an array)

Remarks

Aggregation framework in MongoDB is used to achieve common GROUP BY functionality of SQL.

Consider the following insertions in collection named transactions for every example.

> db.transactions.insert({ cr_dr : "D", amount : 100, fee : 2});
> db.transactions.insert({ cr_dr : "C", amount : 100, fee : 2});
> db.transactions.insert({ cr_dr : "C", amount : 10, fee : 2});
> db.transactions.insert({ cr_dr : "D", amount : 100, fee : 4});
> db.transactions.insert({ cr_dr : "D", amount : 10, fee : 2});
> db.transactions.insert({ cr_dr : "C", amount : 10, fee : 4});
> db.transactions.insert({ cr_dr : "D", amount : 100, fee : 2});

Examples

Count

How do you get the number of Debit and Credit transactions? One way to do it is by using count()
function as below.

https://riptutorial.com/ 10

https://docs.mongodb.com/manual/aggregation/

> db.transactions.count({cr_dr : "D"});

or

> db.transactions.find({cr_dr : "D"}).length();

But what if you do not know the possible values of cr_dr upfront. Here Aggregation framework
comes to play. See the below Aggregate query.

> db.transactions.aggregate(
 [
 {
 $group : {
 _id : '$cr_dr', // group by type of transaction
 // Add 1 for each document to the count for this type of transaction
 count : {$sum : 1}
 }
 }
]
);

And the result is

{
 "_id" : "C",
 "count" : 3
}
{
 "_id" : "D",
 "count" : 5
}

Sum

How to get the summation of amount? See the below aggregate query.

> db.transactions.aggregate(
 [
 {
 $group : {
 _id : '$cr_dr',
 count : {$sum : 1}, //counts the number
 totalAmount : {$sum : '$amount'} //sums the amount
 }
 }
]
);

And the result is

{
 "_id" : "C",
 "count" : 3.0,

https://riptutorial.com/ 11

 "totalAmount" : 120.0
}
{
 "_id" : "D",
 "count" : 5.0,
 "totalAmount" : 410.0
}

Another version that sums amount and fee.

> db.transactions.aggregate(
 [
 {
 $group : {
 _id : '$cr_dr',
 count : {$sum : 1},
 totalAmount : {$sum : { $sum : ['$amount', '$fee']}}
 }
 }
]
);

And the result is

{
 "_id" : "C",
 "count" : 3.0,
 "totalAmount" : 128.0
}
{
 "_id" : "D",
 "count" : 5.0,
 "totalAmount" : 422.0
}

Average

How to get the average amount of debit and credit transactions?

> db.transactions.aggregate(
 [
 {
 $group : {
 _id : '$cr_dr', // group by type of transaction (debit or credit)
 count : {$sum : 1}, // number of transaction for each type
 totalAmount : {$sum : { $sum : ['$amount', '$fee']}}, // sum
 averageAmount : {$avg : { $sum : ['$amount', '$fee']}} // average
 }
 }
]
)

The result is

{

https://riptutorial.com/ 12

 "_id" : "C", // Amounts for credit transactions
 "count" : 3.0,
 "totalAmount" : 128.0,
 "averageAmount" : 40.0
}
{
 "_id" : "D", // Amounts for debit transactions
 "count" : 5.0,
 "totalAmount" : 422.0,
 "averageAmount" : 82.0
}

Operations with arrays.

When you want to work with the data entries in arrays you first need to unwind the array. The
unwind operation creates a document for each entry in the array. When you have lot's of
documents with large arrays you will see an explosion in number of documents.

{ "_id" : 1, "item" : "myItem1", sizes: ["S", "M", "L"] }
{ "_id" : 2, "item" : "myItem2", sizes: ["XS", "M", "XL"] }

db.inventory.aggregate([{ $unwind : "$sizes" }])

An important notice is that when a document doesn't contain the array it will be lost. From mongo
3.2 and up there are is an unwind option "preserveNullAndEmptyArrays" added. This option
makes sure the document is preserved when the array is missing.

{ "_id" : 1, "item" : "myItem1", sizes: ["S", "M", "L"] }
{ "_id" : 2, "item" : "myItem2", sizes: ["XS", "M", "XL"] }
{ "_id" : 3, "item" : "myItem3" }

db.inventory.aggregate([{ $unwind : { path: "$sizes", includeArrayIndex: "arrayIndex" } }])

Match

How to write a query to get all departments where average age of employees making less than or
$70000 is greather than or equal to 35?

In order to that we need to write a query to match employees that have a salary that is less than or
equal to $70000. Then add the aggregate stage to group the employees by the department. Then
add an accumulator with a field named e.g. average_age to find the average age per department
using the $avg accumulator and below the existing $match and $group aggregates add another
$match aggregate so that we're only retrieving results with an average_age that is greather than
or equal to 35.

db.employees.aggregate([
 {"$match": {"salary": {"$lte": 70000}}},
 {"$group": {"_id": "$dept",
 "average_age": {"$avg": "$age"}
 }
 },
 {"$match": {"average_age": {"$gte": 35}}}

https://riptutorial.com/ 13

https://docs.mongodb.com/manual/reference/operator/aggregation/unwind/

])

The result is:

{
 "_id": "IT",
 "average_age": 31
}
{
 "_id": "Customer Service",
 "average_age": 34.5
}
{
 "_id": "Finance",
 "average_age": 32.5
}

Remove docs that have a duplicate field in a collection (dedupe)

Note that the allowDiskUse: true option is optional but will help mitigate out of memory issues as
this aggregation can be a memory intensive operation if your collection size is large - so i
recommend to always use it.

var duplicates = [];

db.transactions.aggregate([
 { $group: {
 _id: { cr_dr: "$cr_dr"},
 dups: { "$addToSet": "$_id" },
 count: { "$sum": 1 }
 }
},
{ $match: {
 count: { "$gt": 1 }
}}
],allowDiskUse: true}
)
.result
.forEach(function(doc) {
 doc.dups.shift();
 doc.dups.forEach(function(dupId){
 duplicates.push(dupId);
 }
)
})
// printjson(duplicates);

// Remove all duplicates in one go
db.transactions.remove({_id:{$in:duplicates}})

Read Aggregation online: https://riptutorial.com/mongodb/topic/3852/aggregation

https://riptutorial.com/ 14

https://riptutorial.com/mongodb/topic/3852/aggregation

Chapter 4: Authentication Mechanisms in
MongoDB

Introduction

Authentication is the process of verifying the identity of a client. When access control, i.e.
authorization, is enabled, MongoDB requires all clients to authenticate themselves in order to
determine their access.

MongoDB supports a number of authentication mechanisms that clients can use to verify their
identity. These mechanisms allow MongoDB to integrate into your existing authentication system.

Examples

Authentication Mechanisms

MongoDB supports multiple authentication mechanisms.

Client and User Authentication Mechanisms

SCRAM-SHA-1•

X.509 Certificate Authentication•

MongoDB Challenge and Response (MONGODB-CR)•

LDAP proxy authentication, and•

Kerberos authentication•

Internal Authentication Mechanisms

Keyfile•
X.509•

Read Authentication Mechanisms in MongoDB online:
https://riptutorial.com/mongodb/topic/8113/authentication-mechanisms-in-mongodb

https://riptutorial.com/ 15

https://riptutorial.com/mongodb/topic/8113/authentication-mechanisms-in-mongodb

Chapter 5: Backing up and Restoring Data

Examples

mongoimport with JSON

Sample zipcode dataset in zipcodes.json stored in c:\Users\yc03ak1\Desktop\zips.json

{ "_id" : "01001", "city" : "AGAWAM", "loc" : [-72.622739, 42.070206], "pop" : 15338,
"state" : "MA" }
{ "_id" : "01002", "city" : "CUSHMAN", "loc" : [-72.51564999999999, 42.377017], "pop" :
36963, "state" : "MA" }
{ "_id" : "01005", "city" : "BARRE", "loc" : [-72.10835400000001, 42.409698], "pop" : 4546,
"state" : "MA" }
{ "_id" : "01007", "city" : "BELCHERTOWN", "loc" : [-72.41095300000001, 42.275103], "pop" :
10579, "state" : "MA" }
{ "_id" : "01008", "city" : "BLANDFORD", "loc" : [-72.936114, 42.182949], "pop" : 1240,
"state" : "MA" }
{ "_id" : "01010", "city" : "BRIMFIELD", "loc" : [-72.188455, 42.116543], "pop" : 3706,
"state" : "MA" }
{ "_id" : "01011", "city" : "CHESTER", "loc" : [-72.988761, 42.279421], "pop" : 1688,
"state" : "MA" }

to import this data-set to the database named "test" and collection named "zips"

C:\Users\yc03ak1>mongoimport --db test --collection "zips" --drop --type json --host
"localhost:47019" --file "c:\Users\yc03ak1\Desktop\zips.json"

--db : name of the database where data is to be imported to•
--collection: name of the collection in the database where data is to be improted•
--drop : drops the collection first before importing•
--type : document type which needs to be imported. default JSON•
--host : mongodb host and port on which data is to be imported.•
--file : path where the json file is•

output :

2016-08-10T20:10:50.159-0700 connected to: localhost:47019
2016-08-10T20:10:50.163-0700 dropping: test.zips
2016-08-10T20:10:53.155-0700 [################........] test.zips 2.1 MB/3.0 MB (68.5%)
2016-08-10T20:10:56.150-0700 [########################] test.zips 3.0 MB/3.0 MB (100.0%)
2016-08-10T20:10:57.819-0700 [########################] test.zips 3.0 MB/3.0 MB (100.0%)
2016-08-10T20:10:57.821-0700 imported 29353 documents

mongoimport with CSV

Sample test dataset CSV file stored at the location c:\Users\yc03ak1\Desktop\testing.csv

_id city loc pop state

https://riptutorial.com/ 16

1 A [10.0, 20.0] 2222 PQE
2 B [10.1, 20.1] 22122 RW
3 C [10.2, 20.0] 255222 RWE
4 D [10.3, 20.3] 226622 SFDS
5 E [10.4, 20.0] 222122 FDS

to import this data-set to the database named "test" and collection named "sample"

C:\Users\yc03ak1>mongoimport --db test --collection "sample" --drop --type csv --headerline --
host "localhost:47019" --file "c:\Users\yc03ak1\Desktop\testing.csv"

--headerline : use the first line of the csv file as the fields for the json document•

output :

2016-08-10T20:25:48.572-0700 connected to: localhost:47019
2016-08-10T20:25:48.576-0700 dropping: test.sample
2016-08-10T20:25:49.109-0700 imported 5 documents

OR

C:\Users\yc03ak1>mongoimport --db test --collection "sample" --drop --type csv --fields
_id,city,loc,pop,state --host "localhost:47019" --file "c:\Users\yc03ak1\Desktop\testing.csv"

--fields : comma seperated list of fields which needs to be imported in the json document.
Output:

•

2016-08-10T20:26:48.978-0700 connected to: localhost:47019
2016-08-10T20:26:48.982-0700 dropping: test.sample
2016-08-10T20:26:49.611-0700 imported 6 documents

Read Backing up and Restoring Data online: https://riptutorial.com/mongodb/topic/6290/backing-
up-and-restoring-data

https://riptutorial.com/ 17

https://riptutorial.com/mongodb/topic/6290/backing-up-and-restoring-data
https://riptutorial.com/mongodb/topic/6290/backing-up-and-restoring-data

Chapter 6: Backing up and Restoring Data

Examples

Basic mongodump of local default mongod instance

mongodump --db mydb --gzip --out "mydb.dump.$(date +%F_%R)"

This command will dump a bson gzipped archive of your local mongod 'mydb' database to the
'mydb.dump.{timestamp}' directory

Basic mongorestore of local default mongod dump

mongorestore --db mydb mydb.dump.2016-08-27_12:44/mydb --drop --gzip

This command will first drop your current 'mydb' database and then restore your gzipped bson
dump from the 'mydb mydb.dump.2016-08-27_12:44/mydb' archive dump file.

Read Backing up and Restoring Data online: https://riptutorial.com/mongodb/topic/6494/backing-
up-and-restoring-data

https://riptutorial.com/ 18

https://riptutorial.com/mongodb/topic/6494/backing-up-and-restoring-data
https://riptutorial.com/mongodb/topic/6494/backing-up-and-restoring-data

Chapter 7: Bulk Operations

Remarks

Constructing a list of write operations to perform in bulk for a single collection.

Examples

Converting a field to another type and updating the entire collection in Bulk

Usually the case when one wants to change a field type to another, for instance the original
collection may have "numerical" or "date" fields saved as strings:

{
 "name": "Alice",
 "salary": "57871",
 "dob": "1986-08-21"
},
{
 "name": "Bob",
 "salary": "48974",
 "dob": "1990-11-04"
}

The objective would be to update a humongous collection like the above to

{
 "name": "Alice",
 "salary": 57871,
 "dob": ISODate("1986-08-21T00:00:00.000Z")
},
{
 "name": "Bob",
 "salary": 48974,
 "dob": ISODate("1990-11-04T00:00:00.000Z")
}

For relatively small data, one can achieve the above by iterating the collection using a snapshot
with the cursor's forEach() method and updating each document as follows:

db.test.find({
 "salary": { "$exists": true, "$type": 2 },
 "dob": { "$exists": true, "$type": 2 }
}).snapshot().forEach(function(doc){
 var newSalary = parseInt(doc.salary),
 newDob = new ISODate(doc.dob);
 db.test.updateOne(
 { "_id": doc._id },
 { "$set": { "salary": newSalary, "dob": newDob } }
);
});

https://riptutorial.com/ 19

https://docs.mongodb.com/manual/reference/method/cursor.snapshot/
http://**%5B%60forEach()%60%5D%5B2%5D**

Whilst this is optimal for small collections, performance with large collections is greatly reduced
since looping through a large dataset and sending each update operation per request to the server
incurs a computational penalty.

The Bulk() API comes to the rescue and greatly improves performance since write operations are
sent to the server only once in bulk. Efficiency is achieved since the method does not send every
write request to the server (as with the current update statement within the forEach() loop) but just
once in every 1000 requests, thus making updates more efficient and quicker than currently is.

Using the same concept above with the forEach() loop to create the batches, we can update the
collection in bulk as follows. In this demonstration the Bulk() API available in MongoDB versions >=
2.6 and < 3.2 uses the initializeUnorderedBulkOp() method to execute in parallel, as well as in a
nondeterministic order, the write operations in the batches.

It updates all the documents in the clients collection by changing the salary and dob fields to
numerical and datetime values respectively:

var bulk = db.test.initializeUnorderedBulkOp(),
 counter = 0; // counter to keep track of the batch update size

db.test.find({
 "salary": { "$exists": true, "$type": 2 },
 "dob": { "$exists": true, "$type": 2 }
}).snapshot().forEach(function(doc){
 var newSalary = parseInt(doc.salary),
 newDob = new ISODate(doc.dob);
 bulk.find({ "_id": doc._id }).updateOne({
 "$set": { "salary": newSalary, "dob": newDob }
 });

 counter++; // increment counter
 if (counter % 1000 == 0) {
 bulk.execute(); // Execute per 1000 operations and re-initialize every 1000 update
statements
 bulk = db.test.initializeUnorderedBulkOp();
 }
});

The next example applies to the new MongoDB version 3.2 which has since deprecated the Bulk()
API and provided a newer set of apis using bulkWrite().

It uses the same cursors as above but creates the arrays with the bulk operations using the same
forEach() cursor method to push each bulk write document to the array. Because write commands
can accept no more than 1000 operations, there's need to group operations to have at most 1000
operations and re-intialise the array when the loop hits the 1000 iteration:

var cursor = db.test.find({
 "salary": { "$exists": true, "$type": 2 },
 "dob": { "$exists": true, "$type": 2 }
 }),
 bulkUpdateOps = [];

https://riptutorial.com/ 20

https://docs.mongodb.com/manual/reference/method/Bulk/
https://docs.mongodb.com/manual/reference/method/cursor.forEach/
https://docs.mongodb.com/manual/reference/method/cursor.forEach/
https://docs.mongodb.com/manual/reference/method/Bulk/
https://docs.mongodb.com/manual/reference/method/db.collection.initializeUnorderedBulkOp/#db.collection.initializeUnorderedBulkOp
https://docs.mongodb.com/manual/reference/method/Bulk/
https://docs.mongodb.org/v3.2/reference/method/db.collection.bulkWrite/#db.collection.bulkWrite
https://docs.mongodb.com/manual/reference/method/cursor.forEach/

cursor.snapshot().forEach(function(doc){
 var newSalary = parseInt(doc.salary),
 newDob = new ISODate(doc.dob);
 bulkUpdateOps.push({
 "updateOne": {
 "filter": { "_id": doc._id },
 "update": { "$set": { "salary": newSalary, "dob": newDob } }
 }
 });

 if (bulkUpdateOps.length === 1000) {
 db.test.bulkWrite(bulkUpdateOps);
 bulkUpdateOps = [];
 }
});

if (bulkUpdateOps.length > 0) { db.test.bulkWrite(bulkUpdateOps); }

Read Bulk Operations online: https://riptutorial.com/mongodb/topic/6211/bulk-operations

https://riptutorial.com/ 21

https://riptutorial.com/mongodb/topic/6211/bulk-operations

Chapter 8: Collections

Remarks

Create Database

Examples

Create a Collection

First Select Or Create a database.

> use mydb
switched to db mydb

Using db.createCollection("yourCollectionName") method you can explicitly create Collection.

> db.createCollection("newCollection1")
{ "ok" : 1 }

Using show collections command see all collections in the database.

> show collections
newCollection1
system.indexes
>

The db.createCollection() method has the following parameters:

Parameter Type Description

name string The name of the collection to create.

options document
Optional. Configuration options for creating a capped collection or
for preallocating space in a new collection.

The fllowing example shows the syntax of createCollection() method with few important options

>db.createCollection("newCollection4", {capped :true, autoIndexId : true, size : 6142800, max
: 10000})
{ "ok" : 1 }

Both the db.collection.insert() and the db.collection.createIndex() operations create their
respective collection if they do not already exist.

> db.newCollection2.insert({name : "XXX"})

https://riptutorial.com/ 22

https://docs.mongodb.com/v3.2/reference/glossary/#term-capped-collection

> db.newCollection3.createIndex({accountNo : 1})

Now, Show All the collections using show collections command

> show collections
newCollection1
newCollection2
newCollection3
newCollection4
system.indexes

If you want to see the inserted document, use the find() command.

> db.newCollection2.find()
{ "_id" : ObjectId("58f26876cabafaeb509e9c1f"), "name" : "XXX" }

Drop Collection

MongoDB's db.collection.drop() is used to drop a collection from the database.

First, check the available collections into your database mydb.

> use mydb
switched to db mydb

> show collections
newCollection1
newCollection2
newCollection3
system.indexes

Now drop the collection with the name newCollection1.

> db.newCollection1.drop()
true

Note: If the collection droped successfully then the method will return true otherwise it will return
false.

Again check the list of collections into database.

> show collections
newCollection2
newCollection3
system.indexes

Reference: MongoDB drop() Method.

Read Collections online: https://riptutorial.com/mongodb/topic/9732/collections

https://riptutorial.com/ 23

https://docs.mongodb.com/manual/reference/method/db.collection.drop/
https://riptutorial.com/mongodb/topic/9732/collections

Chapter 9: Configuration

Parameters

Parameter Default

systemLog.verbosity 0

systemLog.quiet false

systemLog.traceAllExceptions false

systemLog.syslogFacility user

systemLog.path -

systemLog.logAppend false

systemLog.logRotate rename

systemLog.destination stdout

systemLog.timeStampFormat iso8601-local

systemLog.component.accessControl.verbosity 0

systemLog.component.command.verbosity 0

systemLog.component.control.verbosity 0

systemLog.component.ftdc.verbosity 0

systemLog.component.geo.verbosity 0

systemLog.component.index.verbosity 0

systemLog.component.network.verbo 0

systemLog.component.query.verbosity 0

systemLog.component.replication.verbosity 0

systemLog.component.sharding.verbosity 0

systemLog.component.storage.verbosity 0

systemLog.component.storage.journal.verbosity 0

systemLog.component.write.verbosity 0

https://riptutorial.com/ 24

Parameter Default

processManagement.fork false

processManagement.pidFilePath none

net.port 27017

net.bindIp 0.0.0.0

net.maxIncomingConnections 65536

net.wireObjectCheck true

net.ipv6 false

net.unixDomainSocket.enabled true

net.unixDomainSocket.pathPrefix /tmp

net.unixDomainSocket.filePermissions 0700

net.http.enabled false

net.http.JSONPEnabled false

net.http.RESTInterfaceEnabled false

net.ssl.sslOnNormalPorts false

net.ssl.mode disabled

net.ssl.PEMKeyFile none

net.ssl.PEMKeyPassword none

net.ssl.clusterFile none

net.ssl.clusterPassword none

net.ssl.CAFile none

net.ssl.CRLFile none

net.ssl.allowConnectionsWithoutCertificates false

net.ssl.allowInvalidCertificates false

net.ssl.allowInvalidHostnames false

net.ssl.disabledProtocols none

https://riptutorial.com/ 25

Parameter Default

net.ssl.FIPSMode false

Examples

Starting mongo with a specific config file

Using the --config flag.

$ /bin/mongod --config /etc/mongod.conf
$ /bin/mongos --config /etc/mongos.conf

Note that -f is the shorter synonym for --config.

Read Configuration online: https://riptutorial.com/mongodb/topic/5985/configuration

https://riptutorial.com/ 26

https://riptutorial.com/mongodb/topic/5985/configuration

Chapter 10: CRUD Operation

Syntax

insert(document or array of documents)•
insertOne('document', { writeConcern: 'document' })•
insertMany({ [document 1 , document 2, ...] }, { writeConcern: document, ordered: boolean
})

•

find(query, projection)•
findOne(query, projection)•
update(query, update)•
updateOne(query, update, { upsert: boolean, writeConcern: document })•
updateMany(query, update, { upsert: boolean, writeConcern: document })•
replaceOne(query, replacement, { upsert: boolean, writeConcern: document })•
remove(query, justOne)•
findAndModify(query, sort, update, options[optional])•

Remarks

Updating and Deleting a document should be done carefully. Since operation may affect for
multiple documents.

Examples

Create

db.people.insert({name: 'Tom', age: 28});

Or

db.people.save({name: 'Tom', age: 28});

The difference with save is that if the passed document contains an _id field, if a document already
exists with that _id it will be updated instead of being added as new.

Two new methods to insert documents into a collection, in MongoDB 3.2.x:-

Use insertOne to insert only one record:-

db.people.insertOne({name: 'Tom', age: 28});

Use insertMany to insert multiple records:-

db.people.insertMany([{name: 'Tom', age: 28},{name: 'John', age: 25}, {name: 'Kathy', age:

https://riptutorial.com/ 27

https://docs.mongodb.com/manual/reference/method/db.collection.save/#db.collection.save

23}])

Note that insert is highlighted as deprecated in every official language driver since version 3.0.
The full distinction being that the shell methods actually lagged behind the other drivers in
implementing the method. The same thing applies for all other CRUD methods

Update

Update the entire object:

db.people.update({name: 'Tom'}, {age: 29, name: 'Tom'})

// New in MongoDB 3.2
db.people.updateOne({name: 'Tom'},{age: 29, name: 'Tom'}) //Will replace only first matching
document.

db.people.updateMany({name: 'Tom'},{age: 29, name: 'Tom'}) //Will replace all matching
documents.

Or just update a single field of a document. In this case age:

db.people.update({name: 'Tom'}, {$set: {age: 29}})

You can also update multiple documents simultaneously by adding a third parameter. This query
will update all documents where the name equals Tom:

db.people.update({name: 'Tom'}, {$set: {age: 29}}, {multi: true})

// New in MongoDB 3.2
db.people.updateOne({name: 'Tom'},{$set:{age: 30}) //Will update only first matching document.

db.people.updateMany({name: 'Tom'},{$set:{age: 30}}) //Will update all matching documents.

If a new field is coming for update, that field will be added to the document.

db.people.updateMany({name: 'Tom'},{$set:{age: 30, salary:50000}})// Document will have
`salary` field as well.

If a document is needed to be replaced,

db.collection.replaceOne({name:'Tom'}, {name:'Lakmal',age:25,address:'Sri Lanka'})

can be used.

Note: Fields you use to identify the object will be saved in the updated document. Field that are
not defined in the update section will be removed from the document.

Delete

Deletes all documents matching the query parameter:

https://riptutorial.com/ 28

// New in MongoDB 3.2
db.people.deleteMany({name: 'Tom'})

// All versions
db.people.remove({name: 'Tom'})

Or just one

// New in MongoDB 3.2
db.people.deleteOne({name: 'Tom'})

// All versions
db.people.remove({name: 'Tom'}, true)

MongoDB's remove() method. If you execute this command without any argument or without empty
argument it will remove all documents from the collection.

db.people.remove();

or

db.people.remove({});

Read

Query for all the docs in the people collection that have a name field with a value of 'Tom':

db.people.find({name: 'Tom'})

Or just the first one:

db.people.findOne({name: 'Tom'})

You can also specify which fields to return by passing a field selection parameter. The following
will exclude the _id field and only include the age field:

db.people.find({name: 'Tom'}, {_id: 0, age: 1})

Note: by default, the _id field will be returned, even if you don't ask for it. If you would like not to
get the _id back, you can just follow the previous example and ask for the _id to be excluded by
specifying _id: 0 (or _id: false).If you want to find sub record like address object contains country,
city, etc.

db.people.find({'address.country': 'US'})

& specify field too if required

db.people.find({'address.country': 'US'}, {'name': true, 'address.city': true})Remember that

https://riptutorial.com/ 29

the result has a `.pretty()` method that pretty-prints resulting JSON:

db.people.find().pretty()

More update operators

You can use other operators besides $set when updating a document. The $push operator allows
you to push a value into an array, in this case we will add a new nickname to the nicknames array.

db.people.update({name: 'Tom'}, {$push: {nicknames: 'Tommy'}})
// This adds the string 'Tommy' into the nicknames array in Tom's document.

The $pull operator is the opposite of $push, you can pull specific items from arrays.

db.people.update({name: 'Tom'}, {$pull: {nicknames: 'Tommy'}})
// This removes the string 'Tommy' from the nicknames array in Tom's document.

The $pop operator allows you to remove the first or the last value from an array. Let's say Tom's
document has a property called siblings that has the value ['Marie', 'Bob', 'Kevin', 'Alex'].

db.people.update({name: 'Tom'}, {$pop: {siblings: -1}})
// This will remove the first value from the siblings array, which is 'Marie' in this case.

db.people.update({name: 'Tom'}, {$pop: {siblings: 1}})
// This will remove the last value from the siblings array, which is 'Alex' in this case.

"multi" Parameter while updating multiple documents

To update multiple documents in a collection, set the multi option to true.

db.collection.update(
 query,
 update,
 {
 upsert: boolean,
 multi: boolean,
 writeConcern: document
 }
)

multi is optional. If set to true, updates multiple documents that meet the query criteria. If set to
false, updates one document. The default value is false.

db.mycol.find() { "_id" : ObjectId(598354878df45ec5), "title":"MongoDB Overview"} {
"_id" : ObjectId(59835487adf45ec6), "title":"NoSQL Overview"} { "_id" :
ObjectId(59835487adf45ec7), "title":"Tutorials Point Overview"}

db.mycol.update({'title':'MongoDB Overview'}, {$set:{'title':'New MongoDB
Tutorial'}},{multi:true})

https://riptutorial.com/ 30

Update of embedded documents.

For the following schema:

{name: 'Tom', age: 28, marks: [50, 60, 70]}

Update Tom's marks to 55 where marks are 50 (Use the positional operator $):

db.people.update({name: "Tom", marks: 50}, {"$set": {"marks.$": 55}})

For the following schema:

{name: 'Tom', age: 28, marks: [{subject: "English", marks: 90},{subject: "Maths", marks: 100},
{subject: "Computes", marks: 20}]}

Update Tom's English marks to 85 :

db.people.update({name: "Tom", "marks.subject": "English"},{"$set":{"marks.$.marks": 85}})

Explaining above example:

By using {name: "Tom", "marks.subject": "English"} you will get the position of the object in the
marks array, where subject is English. In "marks.$.marks", $ is used to update in that position of
the marks array

Update Values in an Array

The positional $ operator identifies an element in an array to update without explicitly specifying
the position of the element in the array.

Consider a collection students with the following documents:

{ "_id" : 1, "grades" : [80, 85, 90] }
{ "_id" : 2, "grades" : [88, 90, 92] }
{ "_id" : 3, "grades" : [85, 100, 90] }

To update 80 to 82 in the grades array in the first document, use the positional $ operator if you do
not know the position of the element in the array:

db.students.update(
 { _id: 1, grades: 80 },
 { $set: { "grades.$" : 82 } }
)

Read CRUD Operation online: https://riptutorial.com/mongodb/topic/1683/crud-operation

https://riptutorial.com/ 31

https://riptutorial.com/mongodb/topic/1683/crud-operation

Chapter 11: Getting database information

Examples

List all databases

show dbs

or

db.adminCommand('listDatabases')

or

db.getMongo().getDBNames()

List all collections in database

show collections

or

show tables

or

db.getCollectionNames()

Read Getting database information online: https://riptutorial.com/mongodb/topic/6397/getting-
database-information

https://riptutorial.com/ 32

https://riptutorial.com/mongodb/topic/6397/getting-database-information
https://riptutorial.com/mongodb/topic/6397/getting-database-information

Chapter 12: Indexes

Syntax

db.collection.createIndex({ <string field> : <1|-1 order> [, <string field> : <1|-1 order>]
});

•

Remarks

Performance Impact: Note that indexes improve read performances, but can have bad impact on
write performance, as inserting a document requires updating all indexes.

Examples

Single field

db.people.createIndex({name: 1})

This creates an ascending single field index on the field name.

In this type of indexes the sort order is irrelevant, because mongo can traverse the index in both
directions.

Compound

db.people.createIndex({name: 1, age: -1})

This creates an index on multiple fields, in this case on the name and age fields. It will be ascending
in name and descending in age.

In this type of index, the sort order is relevant, because it will determine whether the index can
support a sort operation or not. Reverse sorting is supported on any prefix of a compound index,
as long as the sort is in the reverse sort direction for all of the keys in the sort. Otherwise, sorting
for compound indexes need to match the order of the index.

Field order is also important, in this case the index will be sorted first by name, and within each
name value, sorted by the values of the age field. This allows the index to be used by queries on
the name field, or on name and age, but not on age alone.

Delete

To drop an index you could use the index name

db.people.dropIndex("nameIndex")

https://riptutorial.com/ 33

Or the index specification document

db.people.dropIndex({name: 1})

List

db.people.getIndexes()

This will return an array of documents each describing an index on the people collection

Index Creation Basics

See the below transactions collection.

> db.transactions.insert({ cr_dr : "D", amount : 100, fee : 2});
> db.transactions.insert({ cr_dr : "C", amount : 100, fee : 2});
> db.transactions.insert({ cr_dr : "C", amount : 10, fee : 2});
> db.transactions.insert({ cr_dr : "D", amount : 100, fee : 4});
> db.transactions.insert({ cr_dr : "D", amount : 10, fee : 2});
> db.transactions.insert({ cr_dr : "C", amount : 10, fee : 4});
> db.transactions.insert({ cr_dr : "D", amount : 100, fee : 2});

getIndexes() functions will show all the indices available for a collection.

db.transactions.getIndexes();

Let see the output of above statement.

[
 {
 "v" : 1,
 "key" : {
 "_id" : 1
 },
 "name" : "_id_",
 "ns" : "documentation_db.transactions"
 }
]

There is already one index for transaction collection. This is because MongoDB creates a unique
index on the _id field during the creation of a collection. The _id index prevents clients from
inserting two documents with the same value for the _id field. You cannot drop this index on the
_id field.

Now let's add an index for cr_dr field;

db.transactions.createIndex({ cr_dr : 1 });

The result of the index execution is as follows.

https://riptutorial.com/ 34

{
 "createdCollectionAutomatically" : false,
 "numIndexesBefore" : 1,
 "numIndexesAfter" : 2,
 "ok" : 1
}

The createdCollectionAutomatically indicates if the operation created a collection. If a
collection does not exist, MongoDB creates the collection as part of the indexing
operation.

Let run db.transactions.getIndexes(); again.

[
 {
 "v" : 1,
 "key" : {
 "_id" : 1
 },
 "name" : "_id_",
 "ns" : "documentation_db.transactions"
 },
 {
 "v" : 1,
 "key" : {
 "cr_dr" : 1
 },
 "name" : "cr_dr_1",
 "ns" : "documentation_db.transactions"
 }
]

Now you see transactions collection have two indices. Default _id index and cr_dr_1 which we
created. The name is assigned by MongoDB. You can set your own name like below.

db.transactions.createIndex({ cr_dr : -1 },{name : "index on cr_dr desc"})

Now db.transactions.getIndexes(); will give you three indices.

[
 {
 "v" : 1,
 "key" : {
 "_id" : 1
 },
 "name" : "_id_",
 "ns" : "documentation_db.transactions"
 },
 {
 "v" : 1,
 "key" : {
 "cr_dr" : 1
 },
 "name" : "cr_dr_1",
 "ns" : "documentation_db.transactions"
 },

https://riptutorial.com/ 35

 {
 "v" : 1,
 "key" : {
 "cr_dr" : -1
 },
 "name" : "index on cr_dr desc",
 "ns" : "documentation_db.transactions"
 }
]

While creating index { cr_dr : -1 } 1 means index will be in ascending order and -1 for descending
order.

2.4

Hashed indexes

Indexes can be defined also as hashed. This is more performant on equality queries, but is not
efficient for range queries; however you can define both hashed and ascending/descending
indexes on the same field.

> db.transactions.createIndex({ cr_dr : "hashed" });

> db.transactions.getIndexes(
[
 {
 "v" : 1,
 "key" : {
 "_id" : 1
 },
 "name" : "_id_",
 "ns" : "documentation_db.transactions"
 },
 {
 "v" : 1,
 "key" : {
 "cr_dr" : "hashed"
 },
 "name" : "cr_dr_hashed",
 "ns" : "documentation_db.transactions"
 }
]

Dropping/Deleting an Index

If index name is known,

db.collection.dropIndex('name_of_index');

If index name is not known,

db.collection.dropIndex({ 'name_of_field' : -1 });

https://riptutorial.com/ 36

Get Indices of a Collection

 db.collection.getIndexes();

Output

[
 {
 "v" : 1,
 "key" : {
 "_id" : 1
 },
 "name" : "_id_",
 "ns" : "documentation_db.transactions"
 },
 {
 "v" : 1,
 "key" : {
 "cr_dr" : 1
 },
 "name" : "cr_dr_1",
 "ns" : "documentation_db.transactions"
 },
 {
 "v" : 1,
 "key" : {
 "cr_dr" : -1
 },
 "name" : "index on cr_dr desc",
 "ns" : "documentation_db.transactions"
 }
]

Unique Index

db.collection.createIndex({ "user_id": 1 }, { unique: true })

enforce uniqueness on the defined index (either single or compound). Building the index will fail if
the collection already contains duplicate values; the indexing will fail also with multiple entries
missing the field (since they will all be indexed with the value null) unless sparse: true is specified.

Sparse indexes and Partial indexes

Sparse indexes:

These can be particularly useful for fields that are optional but which should also be unique.

{ "_id" : "john@example.com", "nickname" : "Johnnie" }
{ "_id" : "jane@example.com" }
{ "_id" : "julia@example.com", "nickname" : "Jules"}
{ "_id" : "jack@example.com" }

Since two entries have no "nickname" specified and indexing will treat unspecified fields as null,

https://riptutorial.com/ 37

the index creation would fail with 2 documents having 'null', so:

db.scores.createIndex({ nickname: 1 } , { unique: true, sparse: true })

will let you still have 'null' nicknames.

Sparse indexes are more compact since they skip/ignore documents that don't specify that field.
So if you have a collection where only less than 10% of documents specify this field, you can
create much smaller indexes - making better use of limited memory if you want to do queries like:

db.scores.find({'nickname': 'Johnnie'})

Partial indexes:

Partial indexes represent a superset of the functionality offered by sparse indexes and
should be preferred over sparse indexes. (New in version 3.2)

Partial indexes determine the index entries based on the specified filter.

db.restaurants.createIndex(
 { cuisine: 1 },
 { partialFilterExpression: { rating: { $gt: 5 } } }
)

If rating is greater than 5, then cuisine will be indexed. Yes, we can specify a property to be
indexed based on the value of other properties also.

Difference between Sparse and Partial indexes:

Sparse indexes select documents to index solely based on the existence of the indexed field, or
for compound indexes, the existence of the indexed fields.

Partial indexes determine the index entries based on the specified filter. The filter can include
fields other than the index keys and can specify conditions other than just an existence check.

Still, a partial index can implement the same behavior as a sparse index

Eg:

db.contacts.createIndex(
 { name: 1 },
 { partialFilterExpression: { name: { $exists: true } } }
)

Note: Both the partialFilterExpression option and the sparse option cannot be specified
at the same time.

Read Indexes online: https://riptutorial.com/mongodb/topic/3934/indexes

https://riptutorial.com/ 38

https://riptutorial.com/mongodb/topic/3934/indexes

Chapter 13: Java Driver

Examples

Create a tailable cursor

find(query).projection(fields).cursorType(CursorType.TailableAwait).iterator();

That code applies to the MongoCollection class.

CursorType is an enum and it has the following values:

Tailable
TailableAwait

Corresponding to the old (<3.0) DBCursor addOption Bytes types:

Bytes.QUERYOPTION_TAILABLE
Bytes.QUERYOPTION_AWAITDATA

Create a database user

To create a user dev with password password123

MongoClient mongo = new MongoClient("localhost", 27017);
MongoDatabase db = mongo.getDatabase("testDB");
Map<String, Object> commandArguments = new BasicDBObject();
commandArguments.put("createUser", "dev");
commandArguments.put("pwd", "password123");
String[] roles = { "readWrite" };
commandArguments.put("roles", roles);
BasicDBObject command = new BasicDBObject(commandArguments);
db.runCommand(command);

Fetch Collection data with condition

To get data from testcollection collection in testdb database where name=dev

import org.bson.Document;
import com.mongodb.BasicDBObject;
import com.mongodb.MongoClient;
import com.mongodb.ServerAddress;
import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoCursor;
import com.mongodb.client.MongoDatabase;

MongoClient mongoClient = new MongoClient(new ServerAddress("localhost", 27017));
MongoDatabase db = mongoClient.getDatabase("testdb");
MongoCollection<Document> collection = db.getCollection("testcollection");

https://riptutorial.com/ 39

BasicDBObject searchQuery = new BasicDBObject();
searchQuery.put("name","dev");

MongoCursor<Document> cursor = collection.find(searchQuery).iterator();
try {
 while (cursor.hasNext()) {
 System.out.println(cursor.next().toJson());
 }
} finally {
 cursor.close();
}

Read Java Driver online: https://riptutorial.com/mongodb/topic/6286/java-driver

https://riptutorial.com/ 40

https://riptutorial.com/mongodb/topic/6286/java-driver

Chapter 14: Managing MongoDB

Examples

Listing currently running queries

The following command lists out the queries that are currently being run on the server

db.currentOp()

The output looks something similar to this

{
 "inprog" : [
 {
 "opid" : "302616759",
 "active" : true,
 "secs_running" : 1,
 "microsecs_running" : NumberLong(1167662),
 "op" : "getmore",
 "ns" : "local.oplog.rs",
 "query" : {

 },
 ...
 },
 {
 "desc" : "conn48",
 "threadId" : "0x114c00700",
 "connectionId" : 48,
 "opid" : "mdss_shard00:302616760",
 "active" : true,
 "secs_running" : 1,
 "microsecs_running" : NumberLong(1169659),
 "op" : "getmore",
 "ns" : "local.oplog.rs"
 ...
 }
]
}

The inprog attribute indicates the queries are currently in progress. The opid is Id of the query or
operation. secs_running indicates the time for which it has been running. This is sometimes useful
to identify long running queries.

Read Managing MongoDB online: https://riptutorial.com/mongodb/topic/7553/managing-mongodb

https://riptutorial.com/ 41

https://riptutorial.com/mongodb/topic/7553/managing-mongodb

Chapter 15: Mongo as a Replica Set

Examples

Mongodb as a Replica Set

We would be creating mongodb as a replica set having 3 instances. One instance would be
primary and the other 2 instances would be secondary.

For simplicity, I am going to have a replica set with 3 instances of mongodb running on the same
server and thus to achieve this, all three mongodb instances would be running on different port
numbers.

In production environment where in you have a dedicated mongodb instance running on a single
server you can reuse the same port numbers.

Create data directories (path where mongodb data would be stored in a file)1.

- mkdir c:\data\server1 (datafile path for instance 1)
- mkdir c:\data\server2 (datafile path for instance 2)
- mkdir c:\data\server3 (datafile path for instance 3)

a. Start the first mongod instance2.

Open command prompt and type the following press enter.•

mongod --replSet s0 --dbpath c:\data\server1 --port 37017 --smallfiles --oplogSize 100

The above command associates the instance of mongodb to a replicaSet name "s0" and the starts
the first instance of mongodb on port 37017 with oplogSize 100MB

b. Similarly start the second instance of Mongodb2.

mongod --replSet s0 --dbpath c:\data\server2 --port 37018 --smallfiles --oplogSize 100

The above command associates the instance of mongodb to a replicaSet name "s0" and the starts
the first instance of mongodb on port 37018 with oplogSize 100MB

c. Now start the third instance of Mongodb2.

mongod --replSet s0 --dbpath c:\data\server3 --port 37019 --smallfiles --oplogSize 100

The above command associates the instance of mongodb to a replicaSet name "s0" and the starts
the first instance of mongodb on port 37019 with oplogSize 100MB

With all the 3 instances started, these 3 instances are independent of each other currently. We
would now need to group these instances as a replica set. We do this with the help of a config

https://riptutorial.com/ 42

object.

3.a Connect to any of the mongod servers via the mongo shell. To do that open the command
prompt and type.

mongo --port 37017

Once connected to the mongo shell, create a config object

 var config = {"_id":"s0", members[]};

this config object has 2 attributes

_id: the name of the replica Set ("s0")1.
members: [] (members is an array of mongod instances. lets keep this blank for now,
we will add members via the push command.

2.
•

3.b To Push(add) mongod instances to the members array in the config object. On the mongo
shell type

 config.members.push({"_id":0,"host":"localhost:37017"});
 config.members.push({"_id":1,"host":"localhost:37018"});
 config.members.push({"_id":2,"host":"localhost:37019"});

We assign each mongod instance an _id and an host. _id can be any unique number and the host
should be the hostname of the server on which its running followed by the port number.

Initiate the config object by the following command in the mongo shell.4.

rs.initiate(config)

Give it a few seconds and we have a replica set of 3 mongod instances running on the
server. type the following command to check the status of the replica set and to identify
which one is primary and which one is secondary.

5.

rs.status();

Read Mongo as a Replica Set online: https://riptutorial.com/mongodb/topic/6603/mongo-as-a-
replica-set

https://riptutorial.com/ 43

https://riptutorial.com/mongodb/topic/6603/mongo-as-a-replica-set
https://riptutorial.com/mongodb/topic/6603/mongo-as-a-replica-set

Chapter 16: Mongo as a Replica Set

Examples

Check MongoDB Replica Set states

Use the below command to check the replica set status.

Command : rs.status()

Connect any one of replica member and fire this command it will give the full state of the replica
set

Example :

 {
 "set" : "ReplicaName",
 "date" : ISODate("2016-09-26T07:36:04.935Z"),
 "myState" : 1,
 "term" : NumberLong(-1),
 "heartbeatIntervalMillis" : NumberLong(2000),
 "members" : [
 {
 "_id" : 0,
 "name" : "<IP>:<PORT>,
 "health" : 1,
 "state" : 1,
 "stateStr" : "PRIMARY",
 "uptime" : 5953744,
 "optime" : Timestamp(1474875364, 36),
 "optimeDate" : ISODate("2016-09-26T07:36:04Z"),
 "electionTime" : Timestamp(1468921646, 1),
 "electionDate" : ISODate("2016-07-19T09:47:26Z"),
 "configVersion" : 6,
 "self" : true
 },
 {
 "_id" : 1,
 "name" : "<IP>:<PORT>",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",
 "uptime" : 5953720,
 "optime" : Timestamp(1474875364, 13),
 "optimeDate" : ISODate("2016-09-26T07:36:04Z"),
 "lastHeartbeat" : ISODate("2016-09-26T07:36:04.244Z"),
 "lastHeartbeatRecv" : ISODate("2016-09-26T07:36:03.871Z"),
 "pingMs" : NumberLong(0),
 "syncingTo" : "10.9.52.55:10050",
 "configVersion" : 6
 },
 {
 "_id" : 2,
 "name" : "<IP>:<PORT>",
 "health" : 1,

https://riptutorial.com/ 44

 "state" : 7,
 "stateStr" : "ARBITER",
 "uptime" : 5953696,
 "lastHeartbeat" : ISODate("2016-09-26T07:36:03.183Z"),
 "lastHeartbeatRecv" : ISODate("2016-09-26T07:36:03.715Z"),
 "pingMs" : NumberLong(0),
 "configVersion" : 6
 },
 {
 "_id" : 3,
 "name" : "<IP>:<PORT>",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",
 "uptime" : 1984305,
 "optime" : Timestamp(1474875361, 16),
 "optimeDate" : ISODate("2016-09-26T07:36:01Z"),
 "lastHeartbeat" : ISODate("2016-09-26T07:36:02.921Z"),
 "lastHeartbeatRecv" : ISODate("2016-09-26T07:36:03.793Z"),
 "pingMs" : NumberLong(22),
 "lastHeartbeatMessage" : "syncing from: 10.9.52.56:10050",
 "syncingTo" : "10.9.52.56:10050",
 "configVersion" : 6
 }
],
 "ok" : 1
 }

From the above we can know the entire replica set status

Read Mongo as a Replica Set online: https://riptutorial.com/mongodb/topic/7043/mongo-as-a-
replica-set

https://riptutorial.com/ 45

https://riptutorial.com/mongodb/topic/7043/mongo-as-a-replica-set
https://riptutorial.com/mongodb/topic/7043/mongo-as-a-replica-set

Chapter 17: Mongo as Shards

Examples

Sharding Environment Setup

Sharding Group Members :

For sharding there are three players.

Config Server1.

Replica Sets2.

Mongos

For a mongo shard we need to setup the above three servers.

3.

Config Server Setup : add the following to mongod conf file

sharding:
 clusterRole: configsvr
replication:
 replSetName: <setname>

run : mongod --config

we can choose config server as replica set or may be a standalone server. Based on our
requirement we can choose the best. If config need to run in replica set we need to follow the
replica set setup

Replica Setup : Create replica set // Please refer the replica setup

MongoS Setup : Mongos is main setup in shard. Its is query router to access all replica sets

Add the following in mongos conf file

 sharding:
 configDB: <configReplSetName>/cfg1.example.net:27017;

Configure Shared :

Connect the mongos via shell (mongo --host --port)

sh.addShard("/s1-mongo1.example.net:27017")1.
sh.enableSharding("")2.
sh.shardCollection("< database >.< collection >", { < key > : < direction > })3.
sh.status() // To ensure the sharding4.

https://riptutorial.com/ 46

Read Mongo as Shards online: https://riptutorial.com/mongodb/topic/7044/mongo-as-shards

https://riptutorial.com/ 47

https://riptutorial.com/mongodb/topic/7044/mongo-as-shards

Chapter 18: MongoDB - Configure a
ReplicaSet to support TLS/SSL

Introduction

How to configure a ReplicaSet to support TLS/SSL?

We will deploy a 3 Nodes ReplicaSet in your local environment and we will use a self-signed
certificate. Do not use a self-signed certificate in PRODUCTION.

How to connect your Client to this ReplicaSet?

We will connect a Mongo Shell.

A description of TLS/SSL, PKI (Public Key Infrastructure) certificates, and Certificate Authority is
beyond the scope of this documentation.

Examples

How to configure a ReplicaSet to support TLS/SSL?

Create the Root Certificate

The Root Certificate (aka CA File) will be used to sign and identify your certificate. To generate it,
run the command below.

openssl req -nodes -out ca.pem -new -x509 -keyout ca.key

Keep the root certificate and its key carefully, both will be used to sign your certificates. The root
certificate might be used by your client as well.

Generate the Certificate Requests and the Private Keys

When generating the Certificate Signing Request (aka CSR), input the exact hostname (or IP)
of your node in the Common Name (aka CN) field. The others fields must have exactly the
same value. You might need to modify your /etc/hosts file.

The commands below will generate the CSR files and the RSA Private Keys (4096 bits).

openssl req -nodes -newkey rsa:4096 -sha256 -keyout mongodb_node_1.key -out mongodb_node_1.csr
openssl req -nodes -newkey rsa:4096 -sha256 -keyout mongodb_node_2.key -out mongodb_node_2.csr
openssl req -nodes -newkey rsa:4096 -sha256 -keyout mongodb_node_3.key -out mongodb_node_3.csr

https://riptutorial.com/ 48

You must generate one CSR for each node of your ReplicaSet. Remember that the Common
Name is not the same from one node to another. Don't base multiple CSRs on the same
Private Key.

You must now have 3 CSRs and 3 Private Keys.

mongodb_node_1.key - mongodb_node_2.key - mongodb_node_3.key
mongodb_node_1.csr - mongodb_node_2.csr - mongodb_node_3.csr

Sign your Certificate Requests

Use the CA File (ca.pem) and its Private Key (ca.key) generated previously to sign each
Certificate Request by running the commands below.

openssl x509 -req -in mongodb_node_1.csr -CA ca.pem -CAkey ca.key -set_serial 00 -out
mongodb_node_1.crt
openssl x509 -req -in mongodb_node_2.csr -CA ca.pem -CAkey ca.key -set_serial 00 -out
mongodb_node_2.crt
openssl x509 -req -in mongodb_node_3.csr -CA ca.pem -CAkey ca.key -set_serial 00 -out
mongodb_node_3.crt

You must sign each CSR.

Your must now have 3 CSRs, 3 Private Keys and 3 self-signed Certificates. Only the Private Keys
and the Certificates will be used by MongoDB.

mongodb_node_1.key - mongodb_node_2.key - mongodb_node_3.key
mongodb_node_1.csr - mongodb_node_2.csr - mongodb_node_3.csr
mongodb_node_1.crt - mongodb_node_2.crt - mongodb_node_3.crt

Each certificate corresponds to one node. Remember carefully which CN / hostname your
gave to each CSR.

Concat each Node Certificate with its key

Run the commands below to concat each Node Certificate with its key in one file (MongoDB
requirement).

cat mongodb_node_1.key mongodb_node_1.crt > mongodb_node_1.pem
cat mongodb_node_2.key mongodb_node_2.crt > mongodb_node_2.pem
cat mongodb_node_3.key mongodb_node_3.crt > mongodb_node_3.pem

Your must now have 3 PEM files.

mongodb_node_1.pem - mongodb_node_2.pem - mongodb_node_3.pem

https://riptutorial.com/ 49

Deploy your ReplicaSet

We will assume that your pem files are located in your current folder as well as data/data1,
data/data2 and data/data3.

Run the commands below to deploy your 3 Nodes ReplicaSet listening on port 27017, 27018 and
27019.

mongod --dbpath data/data_1 --replSet rs0 --port 27017 --sslMode requireSSL --sslPEMKeyFile
mongodb_node_1.pem
mongod --dbpath data/data_2 --replSet rs0 --port 27018 --sslMode requireSSL --sslPEMKeyFile
mongodb_node_2.pem
mongod --dbpath data/data_3 --replSet rs0 --port 27019 --sslMode requireSSL --sslPEMKeyFile
mongodb_node_3.pem

You now have a 3 Nodes ReplicaSet deployed on your local environment and all their transactions
are encrypted. You cannot connect to this ReplicaSet without using TLS.

Deploy your ReplicaSet for Mutual SSL / Mutual Trust

To force your client to provide a Client Certificate (Mutual SSL), you must add the CA File when
running your instances.

mongod --dbpath data/data_1 --replSet rs0 --port 27017 --sslMode requireSSL --sslPEMKeyFile
mongodb_node_1.pem --sslCAFile ca.pem
mongod --dbpath data/data_2 --replSet rs0 --port 27018 --sslMode requireSSL --sslPEMKeyFile
mongodb_node_2.pem --sslCAFile ca.pem
mongod --dbpath data/data_3 --replSet rs0 --port 27019 --sslMode requireSSL --sslPEMKeyFile
mongodb_node_3.pem --sslCAFile ca.pem

You now have a 3 Nodes ReplicaSet deployed on your local environment and all their transactions
are encrypted. You cannot connect to this ReplicaSet without using TLS or without providing a
Client Certificate trusted by your CA.

How to connect your Client (Mongo Shell) to a ReplicaSet?

No Mutual SSL

In this example, we might use the CA File (ca.pem) that you generated during the "How to
configure a ReplicaSet to support TLS/SSL?" section. We will assume that the CA file is located in
your current folder.

We will assume that your 3 nodes are running on mongo1:27017, mongo2:27018 and
mongo3:27019. (You might need to modify your /etc/hosts file.)

From MongoDB 3.2.6, if your CA File is registered in your Operating System Trust Store, you can
connect to your ReplicaSet without providing the CA File.

https://riptutorial.com/ 50

mongo --ssl --host rs0/mongo1:27017,mongo2:27018,mongo3:27019

Otherwise you must provide the CA File.

mongo --ssl --sslCAFile ca.pem --host rs0/mongo1:27017,mongo2:27018,mongo3:27019

You are now connected to your ReplicaSet and all the transactions between your Mongo Shell and
your ReplicaSet are encrypted.

With Mutual SSL

If your ReplicaSet asks for a Client Certificate, you must provide one signed by the CA used by the
ReplicaSet Deployment. The steps to generate the Client Certificate are almost the same as the
ones to generate the Server Certificate.

Indeed, you just need to modify the Common Name Field during the CSR creation. Instead of
providing 1 Node Hostname in the Common Name Field, you need to provide all the ReplicaSet
Hostnames separated by a comma.

openssl req -nodes -newkey rsa:4096 -sha256 -keyout mongodb_client.key -out mongodb_client.csr
...
Common Name (e.g. server FQDN or YOUR name) []: mongo1,mongo2,mongo3

You might face the Common Name size limitation if the Common Name field is too long (more
than 64 bytes long). To bypass this limitation, you must use the SubjectAltName when generating
the CSR.

openssl req -nodes -newkey rsa:4096 -sha256 -keyout mongodb_client.key -out mongodb_client.csr
-config <(
cat <<-EOF
[req]
default_bits = 4096
prompt = no
default_md = sha256
req_extensions = req_ext
distinguished_name = dn

[dn]
CN = .

[req_ext]
subjectAltName = @alt_names

[alt_names]
DNS.1 = mongo1
DNS.2 = mongo2
DNS.3 = mongo3
EOF
)

Then you sign the CSR using the CA certificate and key.

https://riptutorial.com/ 51

openssl x509 -req -in mongodb_client.csr -CA ca.pem -CAkey ca.key -set_serial 00 -out
mongodb_client.crt

Finally, you concat the key and the signed certificate.

cat mongodb_client.key mongodb_client.crt > mongodb_client.pem

To connect to your ReplicaSet, you can now provide the newly generated Client Certificate.

mongo --ssl --sslCAFile ca.pem --host rs0/mongo1:27017,mongo2:27018,mongo3:27019 --
sslPEMKeyFile mongodb_client.pem

You are now connected to your ReplicaSet and all the transactions between your Mongo Shell and
your ReplicaSet are encrypted.

Read MongoDB - Configure a ReplicaSet to support TLS/SSL online:
https://riptutorial.com/mongodb/topic/9539/mongodb---configure-a-replicaset-to-support-tls-ssl

https://riptutorial.com/ 52

https://riptutorial.com/mongodb/topic/9539/mongodb---configure-a-replicaset-to-support-tls-ssl

Chapter 19: MongoDB Aggregation

Examples

Aggregate query examples useful for work and learning

Aggregation is used to perform complex data search operations in the mongo query which can't be
done in normal "find" query.

Create some dummy data:

db.employees.insert({"name":"Adma","dept":"Admin","languages":["german","french","english","hindi"],"age":30,
"totalExp":10});
db.employees.insert({"name":"Anna","dept":"Admin","languages":["english","hindi"],"age":35,
"totalExp":11});
db.employees.insert({"name":"Bob","dept":"Facilities","languages":["english","hindi"],"age":36,
"totalExp":14});
db.employees.insert({"name":"Cathy","dept":"Facilities","languages":["hindi"],"age":31,
"totalExp":4});
db.employees.insert({"name":"Mike","dept":"HR","languages":["english", "hindi",
"spanish"],"age":26, "totalExp":3});
db.employees.insert({"name":"Jenny","dept":"HR","languages":["english", "hindi",
"spanish"],"age":25, "totalExp":3});

Examples by topic:

1. Match: Used to match documents (like SQL where clause)

db.employees.aggregate([{$match:{dept:"Admin"}}]);
Output:
{ "_id" : ObjectId("54982fac2e9b4b54ec384a0d"), "name" : "Adma", "dept" : "Admin", "languages"
: ["german", "french", "english", "hindi"], "age" : 30, "totalExp" : 10 }
{ "_id" : ObjectId("54982fc92e9b4b54ec384a0e"), "name" : "Anna", "dept" : "Admin", "languages"
: ["english", "hindi"], "age" : 35, "totalExp" : 11 }

2. Project: Used to populate specific field's value(s)

project stage will include _id field automatically unless you specify to disable.

db.employees.aggregate([{$match:{dept:"Admin"}}, {$project:{"name":1, "dept":1}}]);
Output:
{ "_id" : ObjectId("54982fac2e9b4b54ec384a0d"), "name" : "Adma", "dept" : "Admin" }
{ "_id" : ObjectId("54982fc92e9b4b54ec384a0e"), "name" : "Anna", "dept" : "Admin" }

db.employees.aggregate({$project: {'_id':0, 'name': 1}})
Output:
{ "name" : "Adma" }
{ "name" : "Anna" }
{ "name" : "Bob" }
{ "name" : "Cathy" }
{ "name" : "Mike" }
{ "name" : "Jenny" }

https://riptutorial.com/ 53

3. Group: $group is used to group documents by specific field, here documents are grouped by
"dept" field's value. Another useful feature is that you can group by null, it means all documents
will be aggregated into one.

db.employees.aggregate([{$group:{"_id":"$dept"}}]);

{ "_id" : "HR" }

{ "_id" : "Facilities" }

{ "_id" : "Admin" }

db.employees.aggregate([{$group:{"_id":null, "totalAge":{$sum:"$age"}}}]);
Output:
{ "_id" : null, "noOfEmployee" : 183 }

4. Sum: $sum is used to count or sum the values inside a group.

db.employees.aggregate([{$group:{"_id":"$dept", "noOfDept":{$sum:1}}}]);
Output:
{ "_id" : "HR", "noOfDept" : 2 }
{ "_id" : "Facilities", "noOfDept" : 2 }
{ "_id" : "Admin", "noOfDept" : 2 }

5. Average: Calculates average of specific field's value per group.

db.employees.aggregate([{$group:{"_id":"$dept", "noOfEmployee":{$sum:1},
"avgExp":{$avg:"$totalExp"}}}]);
Output:
{ "_id" : "HR", "noOfEmployee" : 2, "totalExp" : 3 }
{ "_id" : "Facilities", "noOfEmployee" : 2, "totalExp" : 9 }
{ "_id" : "Admin", "noOfEmployee" : 2, "totalExp" : 10.5 }

6. Minimum: Finds minimum value of a field in each group.

db.employees.aggregate([{$group:{"_id":"$dept", "noOfEmployee":{$sum:1},
"minExp":{$min:"$totalExp"}}}]);
Output:
{ "_id" : "HR", "noOfEmployee" : 2, "totalExp" : 3 }
{ "_id" : "Facilities", "noOfEmployee" : 2, "totalExp" : 4 }
{ "_id" : "Admin", "noOfEmployee" : 2, "totalExp" : 10 }

7. Maximum: Finds maximum value of a field in each group.

db.employees.aggregate([{$group:{"_id":"$dept", "noOfEmployee":{$sum:1},
"maxExp":{$max:"$totalExp"}}}]);
Output:
{ "_id" : "HR", "noOfEmployee" : 2, "totalExp" : 3 }
{ "_id" : "Facilities", "noOfEmployee" : 2, "totalExp" : 14 }
{ "_id" : "Admin", "noOfEmployee" : 2, "totalExp" : 11 }

8. Getting specific field's value from first and last document of each group: Works well when
doucument result is sorted.

https://riptutorial.com/ 54

db.employees.aggregate([{$group:{"_id":"$age", "lasts":{$last:"$name"},
"firsts":{$first:"$name"}}}]);
Output:
{ "_id" : 25, "lasts" : "Jenny", "firsts" : "Jenny" }
{ "_id" : 26, "lasts" : "Mike", "firsts" : "Mike" }
{ "_id" : 35, "lasts" : "Cathy", "firsts" : "Anna" }
{ "_id" : 30, "lasts" : "Adma", "firsts" : "Adma" }

9. Minumum with maximum:

db.employees.aggregate([{$group:{"_id":"$dept", "noOfEmployee":{$sum:1},
"maxExp":{$max:"$totalExp"}, "minExp":{$min: "$totalExp"}}}]);
Output:
{ "_id" : "HR", "noOfEmployee" : 2, "maxExp" : 3, "minExp" : 3 }
{ "_id" : "Facilities", "noOfEmployee" : 2, "maxExp" : 14, "minExp" : 4 }
{ "_id" : "Admin", "noOfEmployee" : 2, "maxExp" : 11, "minExp" : 10 }

10. Push and addToSet: Push adds a field's value form each document in group to an array used
to project data in array format, addToSet is simlar to push but it omits duplicate values.

db.employees.aggregate([{$group:{"_id":"dept", "arrPush":{$push:"$age"}, "arrSet":
{$addToSet:"$age"}}}]);
Output:
{ "_id" : "dept", "arrPush" : [30, 35, 35, 35, 26, 25], "arrSet" : [25, 26, 35, 30] }

11. Unwind: Used to create multiple in-memory documents for each value in the specified array
type field, then we can do further aggregation based on those values.

db.employees.aggregate([{$match:{"name":"Adma"}}, {$unwind:"$languages"}]);
Output:
{ "_id" : ObjectId("54982fac2e9b4b54ec384a0d"), "name" : "Adma", "dept" : "HR", "languages" :
"german", "age" : 30, "totalExp" : 10 }
{ "_id" : ObjectId("54982fac2e9b4b54ec384a0d"), "name" : "Adma", "dept" : "HR", "languages" :
"french", "age" : 30, "totalExp" : 10 }
{ "_id" : ObjectId("54982fac2e9b4b54ec384a0d"), "name" : "Adma", "dept" : "HR", "languages" :
"english", "age" : 30, "totalExp" : 10 }
{ "_id" : ObjectId("54982fac2e9b4b54ec384a0d"), "name" : "Adma", "dept" : "HR", "languages" :
"hindi", "age" : 30, "totalExp" : 10 }

12. Sorting:

db.employees.aggregate([{$match:{dept:"Admin"}}, {$project:{"name":1, "dept":1}}, {$sort:
{name: 1}}]);
Output:
{ "_id" : ObjectId("57ff3e553dedf0228d4862ac"), "name" : "Adma", "dept" : "Admin" }
{ "_id" : ObjectId("57ff3e5e3dedf0228d4862ad"), "name" : "Anna", "dept" : "Admin" }

db.employees.aggregate([{$match:{dept:"Admin"}}, {$project:{"name":1, "dept":1}}, {$sort:
{name: -1}}]);
Output:
{ "_id" : ObjectId("57ff3e5e3dedf0228d4862ad"), "name" : "Anna", "dept" : "Admin" }
{ "_id" : ObjectId("57ff3e553dedf0228d4862ac"), "name" : "Adma", "dept" : "Admin" }

13. Skip:

https://riptutorial.com/ 55

db.employees.aggregate([{$match:{dept:"Admin"}}, {$project:{"name":1, "dept":1}}, {$sort:
{name: -1}}, {$skip:1}]);
Output:
{ "_id" : ObjectId("57ff3e553dedf0228d4862ac"), "name" : "Adma", "dept" : "Admin" }

14. Limit:

db.employees.aggregate([{$match:{dept:"Admin"}}, {$project:{"name":1, "dept":1}}, {$sort:
{name: -1}}, {$limit:1}]);
Output:

{ "_id" : ObjectId("57ff3e5e3dedf0228d4862ad"), "name" : "Anna", "dept" : "Admin" }

15. Comparison operator in projection:

db.employees.aggregate([{$match:{dept:"Admin"}}, {$project:{"name":1, "dept":1, age: {$gt:
["$age", 30]}}}]);
Output:
{ "_id" : ObjectId("57ff3e553dedf0228d4862ac"), "name" : "Adma", "dept" : "Admin", "age" :
false }
{ "_id" : ObjectId("57ff3e5e3dedf0228d4862ad"), "name" : "Anna", "dept" : "Admin", "age" :
true }

16. Comparison operator in match:

db.employees.aggregate([{$match:{dept:"Admin", age: {$gt:30}}}, {$project:{"name":1,
"dept":1}}]);
Output:
{ "_id" : ObjectId("57ff3e5e3dedf0228d4862ad"), "name" : "Anna", "dept" : "Admin" }

List of comparison operators: $cmp, $eq, $gt, $gte, $lt, $lte, and $ne

17. Boolean aggregation opertor in projection:

db.employees.aggregate([{$match:{dept:"Admin"}}, {$project:{"name":1, "dept":1, age: { $and: [
{ $gt: ["$age", 30] }, { $lt: ["$age", 36] }] }}}]);

Output:
{ "_id" : ObjectId("57ff3e553dedf0228d4862ac"), "name" : "Adma", "dept" : "Admin", "age" :
false }
{ "_id" : ObjectId("57ff3e5e3dedf0228d4862ad"), "name" : "Anna", "dept" : "Admin", "age" :
true }

18. Boolean aggregation opertor in match:

db.employees.aggregate([{$match:{dept:"Admin", $and: [{age: { $gt: 30 }}, {age: {$lt: 36 }}]
}}, {$project:{"name":1, "dept":1, age: { $and: [{ $gt: ["$age", 30] }, { $lt: ["$age", 36
] }] }}}]);
Output:
{ "_id" : ObjectId("57ff3e5e3dedf0228d4862ad"), "name" : "Anna", "dept" : "Admin", "age" :
true }

List of boolean aggregation opertors: $and, $or, and $not.

https://riptutorial.com/ 56

Complete refrence: https://docs.mongodb.com/v3.2/reference/operator/aggregation/

Java and Spring example

This is an example code to create and execute the aggregate query in MongoDB using Spring
Data.

 try {
 MongoClient mongo = new MongoClient();
 DB db = mongo.getDB("so");
 DBCollection coll = db.getCollection("employees");

 //Equivalent to $match
 DBObject matchFields = new BasicDBObject();
 matchFields.put("dept", "Admin");
 DBObject match = new BasicDBObject("$match", matchFields);

 //Equivalent to $project
 DBObject projectFields = new BasicDBObject();
 projectFields.put("_id", 1);
 projectFields.put("name", 1);
 projectFields.put("dept", 1);
 projectFields.put("totalExp", 1);
 projectFields.put("age", 1);
 projectFields.put("languages", 1);
 DBObject project = new BasicDBObject("$project", projectFields);

 //Equivalent to $group
 DBObject groupFields = new BasicDBObject("_id", "$dept");
 groupFields.put("ageSet", new BasicDBObject("$addToSet", "$age"));
 DBObject employeeDocProjection = new BasicDBObject("$addToSet", new
BasicDBObject("totalExp", "$totalExp").append("age", "$age").append("languages",
"$languages").append("dept", "$dept").append("name", "$name"));
 groupFields.put("docs", employeeDocProjection);
 DBObject group = new BasicDBObject("$group", groupFields);

 //Sort results by age
 DBObject sort = new BasicDBObject("$sort", new BasicDBObject("age", 1));

 List<DBObject> aggregationList = new ArrayList<>();
 aggregationList.add(match);
 aggregationList.add(project);
 aggregationList.add(group);
 aggregationList.add(sort);
 AggregationOutput output = coll.aggregate(aggregationList);

 for (DBObject result : output.results()) {
 BasicDBList employeeList = (BasicDBList) result.get("docs");
 BasicDBObject employeeDoc = (BasicDBObject) employeeList.get(0);
 String name = employeeDoc.get("name").toString();
 System.out.println(name);
 }
 }catch (Exception ex){
 ex.printStackTrace();
 }

See the "resultSet" value in JSON format to understand the output format:

https://riptutorial.com/ 57

https://docs.mongodb.com/v3.2/reference/operator/aggregation/

[{
 "_id": "Admin",
 "ageSet": [35.0, 30.0],
 "docs": [{
 "totalExp": 11.0,
 "age": 35.0,
 "languages": ["english", "hindi"],
 "dept": "Admin",
 "name": "Anna"
 }, {
 "totalExp": 10.0,
 "age": 30.0,
 "languages": ["german", "french", "english", "hindi"],
 "dept": "Admin",
 "name": "Adma"
 }]
}]

The "resultSet" contains one entry for each group, "ageSet" contains the list of age of each
employee of that group, "_id" contains the value of the field that is being used for grouping and
"docs" contains data of each employee of that group that can be used in our own code and UI.

Get sample data

To get random data from certain collection refer to $sample aggregation.

db.emplyees.aggregate({ $sample: { size:1 } })

where size stands for number of items to select.

Left Outer Join with aggregation ($Lookup)

let col_1 = db.collection('col_1');
let col_2 = db.collection('col_2');
col_1 .aggregate([
 { $match: { "_id": 1 } },
 {
 $lookup: {
 from: "col_2",
 localField: "id",
 foreignField: "id",
 as: "new_document"
 }
 }
],function (err, result){
 res.send(result);
});

This feature was newly released in the mongodb version 3.2 , which gives the user a stage to join
one collection with the matching attributes from another collection

Mongodb $LookUp documentation

Read MongoDB Aggregation online: https://riptutorial.com/mongodb/topic/7417/mongodb-

https://riptutorial.com/ 58

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/
https://riptutorial.com/mongodb/topic/7417/mongodb-aggregation

aggregation

https://riptutorial.com/ 59

https://riptutorial.com/mongodb/topic/7417/mongodb-aggregation

Chapter 20: MongoDB Authorization Model

Introduction

Authorization is the basically verifies user privileges. MongoDB support different kind of
authorization models. 1. Role base access control
 Role are group of privileges, actions
over resources. That are gain to users over a given namespace (Database). Actions are performs
on resources. Resources are any object that hold state in database.

Examples

Build-in Roles

Built-in database user roles and database administration roles roles exist in each database.

Database User Roles

read1.
readwrite2.

Read MongoDB Authorization Model online: https://riptutorial.com/mongodb/topic/8114/mongodb-
authorization-model

https://riptutorial.com/ 60

https://riptutorial.com/mongodb/topic/8114/mongodb-authorization-model
https://riptutorial.com/mongodb/topic/8114/mongodb-authorization-model

Chapter 21: Pluggable Storage Engines

Remarks

In MongoDB 3.0, MMAP (default) and WiredTiger are the stable storage engines. Usually, if your
app is read-heavy, use MMAP. If its write-heavy, use WiredTiger.

Your solution may also have a mixed replica set members where you can have one node
configured with MMAP and another with WiredTiger. You can use one to insert massive data and
the other to read with analytical tools.

After MongoDB 3.2, WiredTiger becomes the default engine.

Examples

MMAP

MMAP is a pluggable storage engine that was named after the mmap() Linux command. It maps
files to the virtual memory and optimizes read calls. If you have a large file but needs to read just a
small part of it, mmap() is much faster then a read() call that would bring the entire file to the
memory.

One disadvantage is that you can't have two write calls being processed in parallel for the same
collection. So, MMAP has collection-level locking (and not document-level locking as WiredTiger
offers). This collection-locking is necessary because one MMAP index can reference multiples
documents and if those docs could be updated simultaneously, the index would be inconsistent.

WiredTiger

WiredTiger supports LSM trees to store indexes. LSM trees are faster for write operations when
you need to write huge workloads of random inserts.

In WiredTiger, there is no in-place updates. If you need to update an element of a document, a
new document will be inserted while the old document will be deleted.

WiredTiger also offers document-level concurrency. It assumes that two write operations will not
affect the same document, but if it does, one operation will be rewind and executed later. That's a
great performance boost if rewinds are rare.

WiredTiger supports Snappy and zLib algorithms for compression of data and indexes in the
file system. Snappy is the default. It is less CPU-intensive but have a lower compression rate than
zLib.

How to use WiredTiger Engine

https://riptutorial.com/ 61

mongod --storageEngine wiredTiger --dbpath <newWiredTigerDBPath>

Note:

After mongodb 3.2, the default engine is WiredTiger.1.
newWiredTigerDBPath should not contain data of another storage engine. To migrate your data,
you have to dump them, and re-import them in the new storage engine.

2.

 mongodump --out <exportDataDestination>
 mongod --storageEngine wiredTiger --dbpath <newWiredTigerDBPath>
 mongorestore <exportDataDestination>

In-memory

All data is stored in-memory (RAM) for faster read/access.

mongo-rocks

A key-value engine created to integrate with Facebook's RocksDB.

Fusion-io

A storage engine created by SanDisk that makes it possible to bypass the OS file system layer
and write directly to the storage device.

TokuMX

A storage engine created by Percona that uses fractal tree indexes.

Read Pluggable Storage Engines online: https://riptutorial.com/mongodb/topic/694/pluggable-
storage-engines

https://riptutorial.com/ 62

https://riptutorial.com/mongodb/topic/694/pluggable-storage-engines
https://riptutorial.com/mongodb/topic/694/pluggable-storage-engines

Chapter 22: Python Driver

Syntax

mongodb://[username:password@]host1[:port1][,host2[:port2],...[,hostN[:portN]]][/[database][?options]]•

Parameters

Parameter Detail

hostX
Optional. You can specify as many hosts as necessary. You would specify
multiple hosts, for example, for connections to replica sets.

:portX Optional. The default value is :27017 if not specified.

database

Optional. The name of the database to authenticate if the connection string
includes authentication credentialsIf /database is not specified and the
connection string includes credentials, the driver will authenticate to the admin
database.

?options Connection specific options

Examples

Connect to MongoDB using pymongo

from pymongo import MongoClient

uri = "mongodb://localhost:27017/"

client = MongoClient(uri)

db = client['test_db']
or
db = client.test_db

collection = db['test_collection']
or
collection = db.test_collection

collection.save({"hello":"world"})

print collection.find_one()

PyMongo queries

https://riptutorial.com/ 63

Once you got a collection object, queries use the same syntax as in the mongo shell. Some slight
differences are:

every key must be enclosed in brackets. For example:

db.find({frequencies: {$exists: true}})

becomes in pymongo (note the True in uppercase):

db.find({"frequencies": { "$exists": True }})

•

objects such as object ids or ISODate are manipulated using python classes. PyMongo uses
its own ObjectId class to deal with object ids, while dates use the standard datetime package.
For example, if you want to query all events between 2010 and 2011, you can do:

 from datetime import datetime

 date_from = datetime(2010, 1, 1)
 date_to = datetime(2011, 1, 1)
 db.find({ "date": { "$gte": date_from, "$lt": date_to } }):

•

Update all documents in a collection using PyMongo

Let's say you need to add a field to every document in a collection.

import pymongo

client = pymongo.MongoClient('localhost', 27017)
db = client.mydb.mycollection

for doc in db.find():
 db.update(
 {'_id': doc['_id']},
 {'$set': {'newField': 10} }, upsert=False, multi=False)

The find method returns a Cursor, on which you can easily iterate over using the for in syntax.
Then, we call the update method, specifying the _id and that we add a field ($set). The parameters
upsert and multi come from mongodb (see here for more info).

Read Python Driver online: https://riptutorial.com/mongodb/topic/7843/python-driver

https://riptutorial.com/ 64

http://api.mongodb.com/python/current/api/bson/objectid.html
https://docs.mongodb.com/manual/reference/method/db.collection.update/
https://riptutorial.com/mongodb/topic/7843/python-driver

Chapter 23: Querying for Data (Getting
Started)

Introduction

Basic querying examples

Examples

Find()

retrieve all documents in a collection

db.collection.find({});

retrieve documents in a collection using a condition (similar to WHERE in MYSQL)

db.collection.find({key: value});
example
 db.users.find({email:"sample@email.com"});

retrieve documents in a collection using Boolean conditions (Query Operators)

//AND
db.collection.find({
 $and: [
 { key: value }, { key: value }
]
})
//OR
db.collection.find({
 $or: [
 { key: value }, { key: value }
]
})
//NOT
db.inventory.find({ key: { $not: value } })

more boolean operations and examples can be found here

NOTE: find() will keep on searching the collection even if a document match has been found ,
therefore it is inefficient when used in a large collection , however by carefully modeling your data
and/or using indexes you can increase the efficiency of find()

FindOne()

db.collection.findOne({});

https://riptutorial.com/ 65

https://docs.mongodb.com/manual/reference/operator/query/#query-and-projection-operators

the querying functionality is similar to find() but this will end execution the moment it finds one
document matching its condition , if used with and empty object , it will fetch the first document
and return it . findOne() mongodb api documentation

Query Document - Using AND, OR and IN Conditions

All documents from students collection.

> db.students.find().pretty();

{
 "_id" : ObjectId("58f29a694117d1b7af126dca"),
 "studentNo" : 1,
 "firstName" : "Prosen",
 "lastName" : "Ghosh",
 "age" : 25
}
{
 "_id" : ObjectId("58f29a694117d1b7af126dcb"),
 "studentNo" : 2,
 "firstName" : "Rajib",
 "lastName" : "Ghosh",
 "age" : 25
}
{
 "_id" : ObjectId("58f29a694117d1b7af126dcc"),
 "studentNo" : 3,
 "firstName" : "Rizve",
 "lastName" : "Amin",
 "age" : 23
}
{
 "_id" : ObjectId("58f29a694117d1b7af126dcd"),
 "studentNo" : 4,
 "firstName" : "Jabed",
 "lastName" : "Bangali",
 "age" : 25
}
{
 "_id" : ObjectId("58f29a694117d1b7af126dce"),
 "studentNo" : 5,
 "firstName" : "Gm",
 "lastName" : "Anik",
 "age" : 23
}

Similar mySql Query of the above command.

SELECT * FROM students;

db.students.find({firstName:"Prosen"});

{ "_id" : ObjectId("58f2547804951ad51ad206f5"), "studentNo" : "1", "firstName" : "Prosen",
"lastName" : "Ghosh", "age" : "23" }

Similar mySql Query of the above command.

https://riptutorial.com/ 66

http://mongodb.github.io/node-mongodb-native/2.0/api/Collection.html#findOne

SELECT * FROM students WHERE firstName = "Prosen";

AND Queries

db.students.find({
 "firstName": "Prosen",
 "age": {
 "$gte": 23
 }
});

{ "_id" : ObjectId("58f29a694117d1b7af126dca"), "studentNo" : 1, "firstName" : "Prosen",
"lastName" : "Ghosh", "age" : 25 }

Similar mySql Query of the above command.

SELECT * FROM students WHERE firstName = "Prosen" AND age >= 23

Or Queries

db.students.find({
 "$or": [{
 "firstName": "Prosen"
 }, {
 "age": {
 "$gte": 23
 }
 }]
 });

{ "_id" : ObjectId("58f29a694117d1b7af126dca"), "studentNo" : 1, "firstName" : "Prosen",
"lastName" : "Ghosh", "age" : 25 }
{ "_id" : ObjectId("58f29a694117d1b7af126dcb"), "studentNo" : 2, "firstName" : "Rajib",
"lastName" : "Ghosh", "age" : 25 }
{ "_id" : ObjectId("58f29a694117d1b7af126dcc"), "studentNo" : 3, "firstName" : "Rizve",
"lastName" : "Amin", "age" : 23 }
{ "_id" : ObjectId("58f29a694117d1b7af126dcd"), "studentNo" : 4, "firstName" : "Jabed",
"lastName" : "Bangali", "age" : 25 }
{ "_id" : ObjectId("58f29a694117d1b7af126dce"), "studentNo" : 5, "firstName" : "Gm",
"lastName" : "Anik", "age" : 23 }

Similar mySql Query of the above command.

SELECT * FROM students WHERE firstName = "Prosen" OR age >= 23

And OR Queries

db.students.find({
 firstName : "Prosen",
 $or : [
 {age : 23},
 {age : 25}
]
});

https://riptutorial.com/ 67

{ "_id" : ObjectId("58f29a694117d1b7af126dca"), "studentNo" : 1, "firstName" : "Prosen",
"lastName" : "Ghosh", "age" : 25 }

Similar mySql Query of the above command.

SELECT * FROM students WHERE firstName = "Prosen" AND age = 23 OR age = 25;

IN Queries This queries can improve multiple use of OR Queries

db.students.find(lastName:{$in:["Ghosh", "Amin"]})

{ "_id" : ObjectId("58f29a694117d1b7af126dca"), "studentNo" : 1, "firstName" : "Prosen",
"lastName" : "Ghosh", "age" : 25 }
{ "_id" : ObjectId("58f29a694117d1b7af126dcb"), "studentNo" : 2, "firstName" : "Rajib",
"lastName" : "Ghosh", "age" : 25 }
{ "_id" : ObjectId("58f29a694117d1b7af126dcc"), "studentNo" : 3, "firstName" : "Rizve",
"lastName" : "Amin", "age" : 23 }

Similar mySql query to above command

select * from students where lastName in ('Ghosh', 'Amin')

find() method with Projection

The basic syntax of find() method with projection is as follows

> db.COLLECTION_NAME.find({},{KEY:1});

If you want to show all documents without the age field then the command is as follows

db.people.find({},{age : 0});

If you want to show all documents the age field then the command is as follows

Find() method with Projection

In MongoDB, projection means selecting only the necessary data rather than selecting whole of
the data of a document.

The basic syntax of find() method with projection is as follows

> db.COLLECTION_NAME.find({},{KEY:1});

If you want to to show all document without the age field then the command is as follows

> db.people.find({},{age:0});

If you want to show only the age field then the command is as follows

https://riptutorial.com/ 68

> db.people.find({},{age:1});

Note: _id field is always displayed while executing find() method, if you don't want this field, then
you need to set it as 0.

> db.people.find({},{name:1,_id:0});

Note: 1 is used to show the field while 0 is used to hide the fields.

limit, skip, sort and count the results of the find() method

Similar to aggregation methods also by the find() method you have the possibility to limit, skip, sort
and count the results. Let say we have following collection:

db.test.insertMany([
 {name:"Any", age:"21", status:"busy"},
 {name:"Tony", age:"25", status:"busy"},
 {name:"Bobby", age:"28", status:"online"},
 {name:"Sonny", age:"28", status:"away"},
 {name:"Cher", age:"20", status:"online"}
])

To list the collection:

db.test.find({})

Will return:

{ "_id" : ObjectId("592516d7fbd5b591f53237b0"), "name" : "Any", "age" : "21", "status" :
"busy" }
{ "_id" : ObjectId("592516d7fbd5b591f53237b1"), "name" : "Tony", "age" : "25", "status" :
"busy" }
{ "_id" : ObjectId("592516d7fbd5b591f53237b2"), "name" : "Bobby", "age" : "28", "status" :
"online" }
{ "_id" : ObjectId("592516d7fbd5b591f53237b3"), "name" : "Sonny", "age" : "28", "status" :
"away" }
{ "_id" : ObjectId("592516d7fbd5b591f53237b4"), "name" : "Cher", "age" : "20", "status" :
"online" }

To skip first 3 documents:

db.test.find({}).skip(3)

Will return:

{ "_id" : ObjectId("592516d7fbd5b591f53237b3"), "name" : "Sonny", "age" : "28", "status" :
"away" }
{ "_id" : ObjectId("592516d7fbd5b591f53237b4"), "name" : "Cher", "age" : "20", "status" :
"online" }

To sort descending by the field name:

https://riptutorial.com/ 69

db.test.find({}).sort({ "name" : -1})

Will return:

{ "_id" : ObjectId("592516d7fbd5b591f53237b1"), "name" : "Tony", "age" : "25", "status" :
"busy" }
{ "_id" : ObjectId("592516d7fbd5b591f53237b3"), "name" : "Sonny", "age" : "28", "status" :
"away" }
{ "_id" : ObjectId("592516d7fbd5b591f53237b4"), "name" : "Cher", "age" : "20", "status" :
"online" }
{ "_id" : ObjectId("592516d7fbd5b591f53237b2"), "name" : "Bobby", "age" : "28", "status" :
"online" }
{ "_id" : ObjectId("592516d7fbd5b591f53237b0"), "name" : "Any", "age" : "21", "status" :
"busy" }

If you want to sort ascending just replace -1 with 1

To count the results:

db.test.find({}).count()

Will return:

5

Also combinations of this methods are allowed. For example get 2 documents from descending
sorted collection skipping the first 1:

db.test.find({}).sort({ "name" : -1}).skip(1).limit(2)

Will return:

{ "_id" : ObjectId("592516d7fbd5b591f53237b3"), "name" : "Sonny", "age" : "28", "status" :
"away" }
{ "_id" : ObjectId("592516d7fbd5b591f53237b4"), "name" : "Cher", "age" : "20", "status" :
"online" }

Read Querying for Data (Getting Started) online:
https://riptutorial.com/mongodb/topic/9271/querying-for-data---getting-started--

https://riptutorial.com/ 70

https://riptutorial.com/mongodb/topic/9271/querying-for-data---getting-started--

Chapter 24: Replication

Examples

Basic configuration with three nodes

The replica set is a group of mongod instances that maintain the same data set.

This example shows how to configure a replica set with three instances on the same server.

Creating data folders

mkdir /srv/mongodb/data/rs0-0
mkdir /srv/mongodb/data/rs0-1
mkdir /srv/mongodb/data/rs0-2

Starting mongod instances

mongod --port 27017 --dbpath /srv/mongodb/data/rs0-0 --replSet rs0
mongod --port 27018 --dbpath /srv/mongodb/data/rs0-1 --replSet rs0
mongod --port 27019 --dbpath /srv/mongodb/data/rs0-2 --replSet rs0

Configuring replica set

mongo --port 27017 // connection to the instance 27017

rs.initiate(); // initilization of replica set on the 1st node
rs.add("<hostname>:27018") // adding a 2nd node
rs.add("<hostname>:27019") // adding a 3rd node

Testing your setup

For checking the configuration type rs.status(), the result should be like:

{
 "set" : "rs0",
 "date" : ISODate("2016-09-01T12:34:24.968Z"),
 "myState" : 1,
 "term" : NumberLong(4),
 "heartbeatIntervalMillis" : NumberLong(2000),
 "members" : [
 {
 "_id" : 0,
 "name" : "<hostname>:27017",
 "health" : 1,
 "state" : 1,
 "stateStr" : "PRIMARY",

 },
 {
 "_id" : 1,

https://riptutorial.com/ 71

 "name" : "<hostname>:27018",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",

 },
 {
 "_id" : 2,
 "name" : "<hostname>:27019",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",

 }
],
 "ok" : 1
}

Read Replication online: https://riptutorial.com/mongodb/topic/6205/replication

https://riptutorial.com/ 72

https://riptutorial.com/mongodb/topic/6205/replication

Chapter 25: Update Operators

Syntax

{ $set: { <field1>:<value1>, <field2>:<value2>, ... } }•

Parameters

parameters Meaning

fieldName Field will be updated :{name: 'Tom'}

targetVaule Value will be assigned to the field :{name: 'Tom'}

Remarks

Reference for $set operator: $set on offical website

Examples

$set operator to update specified field(s) in document(s)

I.Overview

A significant difference between MongoDB & RDBMS is MongoDB has many kinds of operators.
One of them is update operator, which is used in update statements.

II.What happen if we don't use update
operators?

Suppose we have a student collection to store student information(Table view):

https://riptutorial.com/ 73

https://docs.mongodb.com/manual/reference/operator/update/set/
http://i.stack.imgur.com/u0vd0.png

One day you get a job that need to change Tom's gender from "M" to "F". That's easy, right? So
you write below statement very quickly based on your RDBMS experience:

db.student.update(
 {name: 'Tom'}, // query criteria
 {sex: 'F'} // update action
);

Let's see what is the result:

We lost Tom's age & name! From this example, we can know that the whole document will be
overrided if without any update operator in update statement. This is the default behavior of
MongoDB.

III.$set operator

If we want to change only the 'sex' field in Tom's document, we can use $set to specify which
field(s) we want to update:

db.student.update(
 {name: 'Tom'}, // query criteria
 {$set: {sex: 'F'}} // update action
);

The value of $set is an object, its fields stands for those fields you want to update in the
documents, and the values of these fields are the target values.

So, the result is correct now:

https://riptutorial.com/ 74

http://i.stack.imgur.com/ykECO.png

Also, if you want to change both 'sex' and 'age' at the same time, you can append them to $set :

db.student.update(
 {name: 'Tom'}, // query criteria
 {$set: {sex: 'F', age: 40}} // update action
);

Read Update Operators online: https://riptutorial.com/mongodb/topic/5880/update-operators

https://riptutorial.com/ 75

http://i.stack.imgur.com/6Fxmv.png
https://riptutorial.com/mongodb/topic/5880/update-operators

Chapter 26: Upgrading MongoDB version

Introduction

How to update the version of MongoDB on your machine on different platforms and versions.

Remarks

If you have an older version of MongoDB, you must upgrade the whole path to the newest version.
For example, if you are running version 3.0 and want to get version 3.4, you must upgrade 3.0-
>3.2->3.4.

Examples

Upgrading to 3.4 on Ubuntu 16.04 using apt

You must have 3.2 to be able to upgrade to 3.4. This example assumes you are using apt.

sudo service mongod stop0.
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv
0C49F3730359A14518585931BC711F9BA15703C6

1.

echo "deb [arch=amd64,arm64] http://repo.mongodb.org/apt/ubuntu xenial/mongodb-org/3.4
multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.4.list

2.

sudo apt-get update3.
sudo apt-get upgrade4.
sudo service mongod start5.

Ensure the new version is running with mongo. The shell will print out the MongoDB server version
that should be 3.4 now.

Read Upgrading MongoDB version online: https://riptutorial.com/mongodb/topic/9851/upgrading-
mongodb-version

https://riptutorial.com/ 76

https://riptutorial.com/mongodb/topic/9851/upgrading-mongodb-version
https://riptutorial.com/mongodb/topic/9851/upgrading-mongodb-version

Chapter 27: Upserts and Inserts

Examples

Insert a document

_id is a 12 bytes hexadecimal number which assures the uniqueness of every document. You can
provide _id while inserting the document. If you didn't provide then MongoDB provide a unique
id for every document. These 12 bytes first 4 bytes for the current timestamp, next 3 bytes for
machine id, next 2 bytes for process id of mongodb server and remaining 3 bytes are simple
incremental value.

db.mycol.insert({
 _id: ObjectId(7df78ad8902c),
 title: 'MongoDB Overview',
 description: 'MongoDB is no sql database',
 by: 'tutorials point',
 url: 'http://www.tutorialspoint.com',
 tags: ['mongodb', 'database', 'NoSQL'],
 likes: 100
})

Here mycol is a collection name, if the collection doesn't exist in the database, then MongoDB will
create this collection and then insert document into it. In the inserted document if we don't specify
the _id parameter, then MongoDB assigns an unique ObjectId for this document.

Read Upserts and Inserts online: https://riptutorial.com/mongodb/topic/10185/upserts-and-inserts

https://riptutorial.com/ 77

https://riptutorial.com/mongodb/topic/10185/upserts-and-inserts

Credits

S.
No

Chapters Contributors

1
Getting started with
MongoDB

Abdul Rehman Sayed, Amir Rahimi Farahani, Ashari,
Community, ipip, jengeb, manetsus, Peter Mortensen, Prosen
Ghosh, Renukaradhya, Scott Weldon, Sean Reilly, Simulant,
titogeo, WAF

2 2dsphere Index gypsyCoder

3 Aggregation
grape, HoefMeistert, Lakmal Vithanage, LoicM, manetsus, RaR,
steveinatorx, titogeo

4
Authentication
Mechanisms in
MongoDB

Luzan Baral, Niroshan Ranapathi

5
Backing up and
Restoring Data

user641887

6 Bulk Operations chridam

7 Collections Prosen Ghosh

8 Configuration Matt Clark

9 CRUD Operation

fracz, Himavanth, Ishan Soni, Jain, jerry, JohnnyHK, Kelum
Senanayake, KrisVos130, Lakmal Vithanage, Marco, Mayank
Pandeyz, Prosen Ghosh, Renukaradhya, Rick, Rotem,
Shrabanee, sstyvane, Thomas Bormans, Tomás Cañibano

10
Getting database
information

fracz

11 Indexes
Adam Comerford, Batsu, Constantin Guay, jerry, Juan Carlos
Farah, manetsus, Nic Cottrell, RaR, Rick, Sarthak Adhikari,
titogeo, Tomás Cañibano

12 Java Driver dev ツ, Emil Burzo

13 Managing MongoDB Ravi Chandra

14
Mongo as a Replica
Set

user641887

15 Mongo as Shards Selva Kumar

https://riptutorial.com/ 78

https://riptutorial.com/contributor/4054186/abdul-rehman-sayed
https://riptutorial.com/contributor/4267030/amir-rahimi-farahani
https://riptutorial.com/contributor/5834822/ashari
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1288265/ipip
https://riptutorial.com/contributor/4419582/jengeb
https://riptutorial.com/contributor/3555000/manetsus
https://riptutorial.com/contributor/63550/peter-mortensen
https://riptutorial.com/contributor/3290456/prosen-ghosh
https://riptutorial.com/contributor/3290456/prosen-ghosh
https://riptutorial.com/contributor/4527079/renukaradhya
https://riptutorial.com/contributor/2747593/scott-weldon
https://riptutorial.com/contributor/8313/sean-reilly
https://riptutorial.com/contributor/1515052/simulant
https://riptutorial.com/contributor/508214/titogeo
https://riptutorial.com/contributor/544342/waf
https://riptutorial.com/contributor/2805075/gypsycoder
https://riptutorial.com/contributor/3476477/grape
https://riptutorial.com/contributor/1944993/hoefmeistert
https://riptutorial.com/contributor/3001352/lakmal-vithanage
https://riptutorial.com/contributor/7505228/loicm
https://riptutorial.com/contributor/3555000/manetsus
https://riptutorial.com/contributor/6048928/rar
https://riptutorial.com/contributor/2872943/steveinatorx
https://riptutorial.com/contributor/508214/titogeo
https://riptutorial.com/contributor/1939163/luzan-baral
https://riptutorial.com/contributor/5051423/niroshan-ranapathi
https://riptutorial.com/contributor/641887/user641887
https://riptutorial.com/contributor/122005/chridam
https://riptutorial.com/contributor/3290456/prosen-ghosh
https://riptutorial.com/contributor/1790644/matt-clark
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/5295905/himavanth
https://riptutorial.com/contributor/3974526/ishan-soni
https://riptutorial.com/contributor/3280718/jain
https://riptutorial.com/contributor/2404065/jerry
https://riptutorial.com/contributor/1259510/johnnyhk
https://riptutorial.com/contributor/1699937/kelum-senanayake
https://riptutorial.com/contributor/1699937/kelum-senanayake
https://riptutorial.com/contributor/4670703/krisvos130
https://riptutorial.com/contributor/3001352/lakmal-vithanage
https://riptutorial.com/contributor/3493420/marco
https://riptutorial.com/contributor/5921745/mayank-pandeyz
https://riptutorial.com/contributor/5921745/mayank-pandeyz
https://riptutorial.com/contributor/3290456/prosen-ghosh
https://riptutorial.com/contributor/4527079/renukaradhya
https://riptutorial.com/contributor/1405475/rick
https://riptutorial.com/contributor/3306301/rotem
https://riptutorial.com/contributor/4273915/shrabanee
https://riptutorial.com/contributor/3100115/sstyvane
https://riptutorial.com/contributor/3398302/thomas-bormans
https://riptutorial.com/contributor/5384592/tomas-canibano
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/1148648/adam-comerford
https://riptutorial.com/contributor/1029516/batsu
https://riptutorial.com/contributor/2667369/constantin-guay
https://riptutorial.com/contributor/2404065/jerry
https://riptutorial.com/contributor/1740264/juan-carlos-farah
https://riptutorial.com/contributor/1740264/juan-carlos-farah
https://riptutorial.com/contributor/3555000/manetsus
https://riptutorial.com/contributor/543315/nic-cottrell
https://riptutorial.com/contributor/6048928/rar
https://riptutorial.com/contributor/1405475/rick
https://riptutorial.com/contributor/6398965/sarthak-adhikari
https://riptutorial.com/contributor/508214/titogeo
https://riptutorial.com/contributor/5384592/tomas-canibano
https://riptutorial.com/contributor/3929393/dev--
https://riptutorial.com/contributor/3929393/dev--
https://riptutorial.com/contributor/1075653/emil-burzo
https://riptutorial.com/contributor/820800/ravi-chandra
https://riptutorial.com/contributor/641887/user641887
https://riptutorial.com/contributor/5722345/selva-kumar

16

MongoDB -
Configure a
ReplicaSet to
support TLS/SSL

bappr

17
MongoDB
Aggregation

Andrii Abramov, Avindu Hewa, Erdenezul, saurav

18
MongoDB
Authorization Model

Niroshan Ranapathi

19
Pluggable Storage
Engines

Constantin Guay, Jorge Aranda, tim, Zanon

20 Python Driver Derlin, sergiuz

21
Querying for Data (
Getting Started)

Avindu Hewa, oggo, Prosen Ghosh, SommerEngineering

22 Replication ADIMO

23 Update Operators yellowB

24
Upgrading MongoDB
version

Antti_M

25 Upserts and Inserts Kuhan

https://riptutorial.com/ 79

https://riptutorial.com/contributor/5683655/bappr
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/5878300/avindu-hewa
https://riptutorial.com/contributor/8143264/erdenezul
https://riptutorial.com/contributor/3896066/saurav
https://riptutorial.com/contributor/5051423/niroshan-ranapathi
https://riptutorial.com/contributor/2667369/constantin-guay
https://riptutorial.com/contributor/694134/jorge-aranda
https://riptutorial.com/contributor/5249708/tim
https://riptutorial.com/contributor/1476885/zanon
https://riptutorial.com/contributor/2667536/derlin
https://riptutorial.com/contributor/1426906/sergiuz
https://riptutorial.com/contributor/5878300/avindu-hewa
https://riptutorial.com/contributor/3292080/oggo
https://riptutorial.com/contributor/3290456/prosen-ghosh
https://riptutorial.com/contributor/2258393/sommerengineering
https://riptutorial.com/contributor/378026/adimo
https://riptutorial.com/contributor/1681772/yellowb
https://riptutorial.com/contributor/3280244/antti-m
https://riptutorial.com/contributor/3214177/kuhan

	About
	Chapter 1: Getting started with MongoDB
	Remarks
	Versions
	Examples
	Installation
	Hello World
	Complementary Terms
	Execution of a JavaScript file in MongoDB
	Making the output of find readable in shell
	Basic commands on mongo shell

	Chapter 2: 2dsphere Index
	Examples
	Create a 2dsphere Index

	Chapter 3: Aggregation
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Count
	Sum
	Average
	Operations with arrays.
	Match
	Remove docs that have a duplicate field in a collection (dedupe)

	Chapter 4: Authentication Mechanisms in MongoDB
	Introduction
	Examples
	Authentication Mechanisms

	Chapter 5: Backing up and Restoring Data
	Examples
	mongoimport with JSON
	mongoimport with CSV

	Chapter 6: Backing up and Restoring Data
	Examples
	Basic mongodump of local default mongod instance
	Basic mongorestore of local default mongod dump

	Chapter 7: Bulk Operations
	Remarks
	Examples
	Converting a field to another type and updating the entire collection in Bulk

	Chapter 8: Collections
	Remarks
	Examples
	Create a Collection
	Drop Collection

	Chapter 9: Configuration
	Parameters
	Examples
	Starting mongo with a specific config file

	Chapter 10: CRUD Operation
	Syntax
	Remarks
	Examples
	Create
	Update
	Delete
	Read
	More update operators
	"multi" Parameter while updating multiple documents
	Update of embedded documents.

	Chapter 11: Getting database information
	Examples
	List all databases
	List all collections in database

	Chapter 12: Indexes
	Syntax
	Remarks
	Examples
	Single field
	Compound
	Delete
	List
	Index Creation Basics

	Hashed indexes
	Dropping/Deleting an Index
	Get Indices of a Collection
	Unique Index
	Sparse indexes and Partial indexes

	Chapter 13: Java Driver
	Examples
	Create a tailable cursor
	Create a database user
	Fetch Collection data with condition

	Chapter 14: Managing MongoDB
	Examples
	Listing currently running queries

	Chapter 15: Mongo as a Replica Set
	Examples
	Mongodb as a Replica Set

	Chapter 16: Mongo as a Replica Set
	Examples
	Check MongoDB Replica Set states

	Chapter 17: Mongo as Shards
	Examples
	Sharding Environment Setup

	Chapter 18: MongoDB - Configure a ReplicaSet to support TLS/SSL
	Introduction
	Examples
	How to configure a ReplicaSet to support TLS/SSL?

	Create the Root Certificate
	Generate the Certificate Requests and the Private Keys
	Sign your Certificate Requests
	Concat each Node Certificate with its key
	Deploy your ReplicaSet
	Deploy your ReplicaSet for Mutual SSL / Mutual Trust
	How to connect your Client (Mongo Shell) to a ReplicaSet?

	No Mutual SSL
	With Mutual SSL

	Chapter 19: MongoDB Aggregation
	Examples
	Aggregate query examples useful for work and learning
	Java and Spring example
	Get sample data
	Left Outer Join with aggregation ($Lookup)

	Chapter 20: MongoDB Authorization Model
	Introduction
	Examples
	Build-in Roles

	Chapter 21: Pluggable Storage Engines
	Remarks
	Examples
	MMAP
	WiredTiger

	How to use WiredTiger Engine
	In-memory
	mongo-rocks
	Fusion-io
	TokuMX

	Chapter 22: Python Driver
	Syntax
	Parameters
	Examples
	Connect to MongoDB using pymongo
	PyMongo queries
	Update all documents in a collection using PyMongo

	Chapter 23: Querying for Data (Getting Started)
	Introduction
	Examples
	Find()
	FindOne()
	Query Document - Using AND, OR and IN Conditions
	find() method with Projection
	Find() method with Projection
	limit, skip, sort and count the results of the find() method

	Chapter 24: Replication
	Examples
	Basic configuration with three nodes

	Chapter 25: Update Operators
	Syntax
	Parameters
	Remarks
	Examples
	$set operator to update specified field(s) in document(s)

	I.Overview
	II.What happen if we don't use update operators?
	III.$set operator
	Chapter 26: Upgrading MongoDB version
	Introduction
	Remarks
	Examples
	Upgrading to 3.4 on Ubuntu 16.04 using apt

	Chapter 27: Upserts and Inserts
	Examples
	Insert a document

	Credits

